Uniformity and the Taylor expansion of ordinary lambda-terms

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 403; číslo 2; s. 347 - 372
Hlavní autori: Ehrhard, Thomas, Regnier, Laurent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 28.08.2008
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they enjoy. As a corollary, we obtain (the main part of) a proof that this Taylor expansion commutes with Böhm tree computation, syntactically.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2008.06.001