Uniformity and the Taylor expansion of ordinary lambda-terms

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 403; číslo 2; s. 347 - 372
Hlavní autoři: Ehrhard, Thomas, Regnier, Laurent
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 28.08.2008
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they enjoy. As a corollary, we obtain (the main part of) a proof that this Taylor expansion commutes with Böhm tree computation, syntactically.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2008.06.001