pyIAST: Ideal adsorbed solution theory (IAST) Python package
Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of...
Gespeichert in:
| Veröffentlicht in: | Computer physics communications Jg. 200; H. C; S. 364 - 380 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.03.2016
Elsevier |
| Schlagworte: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.
Source code: https://github.com/CorySimon/pyIAST
Documentation: http://pyiast.readthedocs.org/en/latest/
Program title: pyIAST
Catalogue identifier: AEZA_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEZA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: MIT
No. of lines in distributed program, including test data, etc.: 38478
No. of bytes in distributed program, including test data, etc.: 1918879
Distribution format: tar.gz
Programming language: Python.
Operating system: Linux, Mac, Windows.
Classification: 23.
External routines: Pandas, Numpy, Scipy
Nature of problem: Using ideal adsorbed solution theory (IAST) to predict mixed gas adsorption isotherms from pure-component adsorption isotherm data.
Solution method: Characterize the pure-component adsorption isotherm from experimental or simulated data by fitting a model or using linear interpolation; solve the nonlinear system of equations of IAST.
Running time: Less than a second. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC05-06OR23100; FG02-12ER16362 USDOE Office of Science (SC), Office of Workforce Development for Teachers & Scientists (WDTS) |
| ISSN: | 0010-4655 1879-2944 |
| DOI: | 10.1016/j.cpc.2015.11.016 |