DNA sequence-level analyses reveal potential phenotypic modifiers in a large family with psychiatric disorders
Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and fam...
Saved in:
| Published in: | Molecular psychiatry Vol. 23; no. 12; pp. 2254 - 2265 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Nature Publishing Group
01.12.2018
|
| Subjects: | |
| ISSN: | 1359-4184, 1476-5578, 1476-5578 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1359-4184 1476-5578 1476-5578 |
| DOI: | 10.1038/s41380-018-0087-4 |