Query by Transduction

There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 30; H. 9; S. 1557 - 1571
Hauptverfasser: Shen-Shyang Ho, Wechsler, H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.09.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting.
AbstractList There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting.There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting.
There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting.
There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction [abstract truncated by publisher].
Author Shen-Shyang Ho
Wechsler, H.
Author_xml – sequence: 1
  surname: Shen-Shyang Ho
  fullname: Shen-Shyang Ho
  organization: NASA jet Propulsion Lab., Pasadena, CA
– sequence: 2
  givenname: H.
  surname: Wechsler
  fullname: Wechsler, H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20562270$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18617715$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEUBeAgitbqUhAEKYK6mnpvksljKeKjoKhQ1yHNZGBkOqPJzKL_3tRWBRe6yuY7N3DOLtls2sYTcogwRgR9MX26fJiMKYAcS1CIG2SAmumM5UxvkgGgoJlSVO2Q3RhfAZDnwLbJDiqBUmI-IAfPvQ-L0WwxmgbbxKJ3XdU2e2SrtHX0--t3SF5urqdXd9n94-3k6vI-c1zoLitVKa0TjIPGwoqCqtwKhQUvmbfKUic86pJxCjhDzhnMFC-ddE5xLp1XbEjOV3ffQvve-9iZeRWdr2vb-LaPRgMTnIP8XyqZg2CSiiTP_pRCM1QA_0PG09dc8gRPfsHXtg9NKsYoQVPX6WBCx2vUz-a-MG-hmtuwMF9VJ3C6BjY6W5epblfFb0chF5RKSA5WzoU2xuDLn1Nglqubz9XNcnXzuXqKiF8RV3V2OWQXbFX_FTxaBSvv_fc_nKV9dM4-AN2utF0
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s11042_023_16181_4
crossref_primary_10_1007_s00500_022_07566_y
crossref_primary_10_1016_j_patrec_2015_08_010
crossref_primary_10_1002_sta4_633
crossref_primary_10_13182_FST12_A14626
crossref_primary_10_1016_j_patcog_2012_03_022
crossref_primary_10_1016_j_neucom_2020_01_018
crossref_primary_10_1016_j_patcog_2012_07_025
crossref_primary_10_1109_TNNLS_2017_2710422
crossref_primary_10_1016_j_patrec_2017_02_012
crossref_primary_10_1007_s10994_022_06233_5
crossref_primary_10_1109_TPAMI_2010_48
crossref_primary_10_1016_j_patcog_2014_12_009
crossref_primary_10_1088_0029_5515_54_12_123001
crossref_primary_10_3390_app12168103
crossref_primary_10_1049_ell2_12860
crossref_primary_10_1109_TGRS_2013_2258676
crossref_primary_10_1016_j_jvlc_2009_01_001
crossref_primary_10_1007_s12652_021_03434_z
crossref_primary_10_1016_j_patcog_2019_01_035
crossref_primary_10_1111_j_1541_1338_2011_00538_x
crossref_primary_10_1109_TITB_2010_2048922
crossref_primary_10_1109_TSMCA_2012_2192427
crossref_primary_10_1109_TFUZZ_2013_2291567
crossref_primary_10_1007_s00521_011_0611_9
crossref_primary_10_1016_j_patrec_2012_02_005
Cites_doi 10.1145/500141.500159
10.3115/1220575.1220696
10.1016/B978-1-55860-377-6.50027-X
10.15607/RSS.2005.I.002
10.1145/1027527.1027664
10.1145/1015330.1015385
10.1016/B978-1-55860-335-6.50026-X
10.1198/000313001300339950
10.1007/b106715
10.1109/ICCV.2003.1238391
10.1145/1143844.1143980
10.1162/neco.1989.1.4.541
10.1109/TMM.2002.1017738
10.1021/ci025620t
10.1007/978-1-4757-2606-0
10.7551/mitpress/9780262033589.001.0001
10.1109/TNN.2003.820446
10.1145/130385.130417
10.1007/3-540-36755-1_32
10.1145/1143844.1143897
10.1109/TPAMI.2005.224
10.1145/1135777.1135870
10.1002/9780470140529
10.1007/978-1-4757-3264-1
10.1023/A:1007330508534
10.1145/1141277.1141314
10.1109/TPAMI.2004.1262340
10.1162/neco.1992.4.4.590
10.1109/ICASSP.2003.1198771
10.1007/11503415_17
10.1007/3-540-44795-4_31
10.1016/S0304-3975(02)00100-7
10.1023/A:1007618119488
10.1613/jair.295
10.1023/A:1022606404104
10.1109/TPAMI.2006.156
10.1007/11564096_28
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2007.70811
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1939-3539
EndPage 1571
ExternalDocumentID 2322977891
18617715
20562270
10_1109_TPAMI_2007_70811
4384495
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c469t-f8f7ac634091da6d285a681d4f3ea8a2c6e19f34201b14430b84fc7cc8447ce83
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257504400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Sun Sep 28 06:36:22 EDT 2025
Sat Sep 27 21:29:16 EDT 2025
Sun Nov 23 09:35:50 EST 2025
Wed Oct 01 13:33:33 EDT 2025
Sun Nov 09 06:19:43 EST 2025
Mon Jul 21 06:02:43 EDT 2025
Mon Jul 21 09:12:00 EDT 2025
Tue Nov 18 22:37:42 EST 2025
Sat Nov 29 08:10:55 EST 2025
Tue Aug 26 16:47:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Statistical
Machine learning
Bayes estimation
Statistical analysis
Divergence
Random sampling
Database query
hypothesis testing
Active learning
Inference
Shannon theory
transductive inference
Hypothesis test
Statistical test
support vector machine
Active system
Kolmogorov complexity
Vector support machine
Feasibility
Learning algorithm
Pattern analysis
Kolmogorov equation
Artificial intelligence
Multiclass
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f8f7ac634091da6d285a681d4f3ea8a2c6e19f34201b14430b84fc7cc8447ce83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18617715
PQID 862353318
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_903644078
proquest_miscellaneous_69318006
proquest_miscellaneous_875063726
pascalfrancis_primary_20562270
crossref_primary_10_1109_TPAMI_2007_70811
proquest_journals_862353318
ieee_primary_4384495
pubmed_primary_18617715
crossref_citationtrail_10_1109_TPAMI_2007_70811
proquest_miscellaneous_34440474
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2008
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Baram (ref43) 2004
ref12
ref56
ref15
Graepel (ref57)
ref59
ref14
ref53
ref11
ref17
ref16
ref18
Zhu (ref19)
Tong (ref6) 2001; 2
Vovk (ref49)
ref51
ref46
ref45
ref47
ref42
ref41
Kullback (ref10) 1959
ref44
Weerahandi (ref50) 1994
Abe (ref26)
Roy (ref20)
Yan (ref40)
ref8
Schohn (ref22)
ref7
ref9
Cauwenberghs (ref54) 2000
ref4
Luo (ref37) 2005; 6
ref3
ref5
ref35
ref34
ref36
ref31
Gilad-Bachrach (ref30)
Saunders (ref52)
ref33
Zhang (ref13)
ref1
ref39
ref38
Campbell (ref23)
Joachims (ref2)
Ho (ref48)
Brinker (ref24) 2004
ref25
Graepel (ref58)
ref21
ref28
ref27
ref29
ref60
McCallum (ref32)
ref61
Ho (ref55)
References_xml – ident: ref36
  doi: 10.1145/500141.500159
– start-page: 514
  volume-title: Proc. Ann. Conf. Advances in Neural Information Processing Systems (NIPS ’00)
  ident: ref58
  article-title: The Kernel Gibbs Sampler
– ident: ref4
  doi: 10.3115/1220575.1220696
– ident: ref27
  doi: 10.1016/B978-1-55860-377-6.50027-X
– ident: ref39
  doi: 10.15607/RSS.2005.I.002
– start-page: 67
  volume-title: Proc. IEEE Int’l Conf. Multimedia and Expo
  ident: ref40
  article-title: Multi-Class Active Learning for Video Semantic Feature Extraction
– volume: 6
  start-page: 589
  year: 2005
  ident: ref37
  article-title: Active Learning to Recognize Multiple Types of Plankton
  publication-title: J. Machine Learning Research
– start-page: 1191
  volume-title: Proc. 17th Int’l Conf. Machine Learning
  ident: ref13
  article-title: A Probability Analysis on the Value of Unlabeled Data for Classification Problems
– ident: ref35
  doi: 10.1145/1027527.1027664
– start-page: 441
  volume-title: Proc. 18th Int’l Conf. Machine Learning
  ident: ref20
  article-title: Toward Optimal Active Learning through Sampling Estimation of Error Reduction
– ident: ref29
  doi: 10.1145/1015330.1015385
– start-page: 409
  volume-title: Advances in Neural Information Processing Systems 13
  year: 2000
  ident: ref54
  article-title: Incremental Support Vector Machine Learning
– ident: ref15
  doi: 10.1016/B978-1-55860-335-6.50026-X
– ident: ref56
  doi: 10.1198/000313001300339950
– ident: ref7
  doi: 10.1007/b106715
– ident: ref34
  doi: 10.1109/ICCV.2003.1238391
– ident: ref47
  doi: 10.1145/1143844.1143980
– ident: ref59
  doi: 10.1162/neco.1989.1.4.541
– volume-title: Proc. ICDM Workshop Temporal Data Mining: Algorithms, Theory and Applications (TDM ’04)
  ident: ref55
  article-title: Learning from Data Streams via Online Transduction
– ident: ref17
  doi: 10.1109/TMM.2002.1017738
– start-page: 200
  volume-title: Proc. 16th Int’l Conf. Machine Learning
  ident: ref2
  article-title: Transductive Inference for Text Classification Using Support Vector Machines
– start-page: 359
  volume-title: Proc. 15th Int’l Conf. Machine Learning
  ident: ref32
  article-title: Employing EM and Pool-Based Active Learning for Text Classification
– volume-title: Proc. ICML Workshop Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining
  ident: ref19
  article-title: Combining Active Learning and Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
– ident: ref38
  doi: 10.1021/ci025620t
– ident: ref8
  doi: 10.1007/978-1-4757-2606-0
– ident: ref46
  doi: 10.7551/mitpress/9780262033589.001.0001
– start-page: 456
  volume-title: Proc. Ann. Conf. Advances in Neural Information Processing Systems (NIPS ’99)
  ident: ref57
  article-title: Bayesian Transduction
– ident: ref44
  doi: 10.1109/TNN.2003.820446
– ident: ref18
  doi: 10.1145/130385.130417
– ident: ref51
  doi: 10.1007/3-540-36755-1_32
– ident: ref41
  doi: 10.1145/1143844.1143897
– ident: ref3
  doi: 10.1109/TPAMI.2005.224
– ident: ref42
  doi: 10.1145/1135777.1135870
– ident: ref45
  doi: 10.1002/9780470140529
– volume-title: Proc. Int’l Joint Conf. Neural Network (IJCNN ’03)
  ident: ref48
  article-title: Transductive Confidence Machines for Active Learning
– volume-title: Exact Statistical Methods for Data Analysis
  year: 1994
  ident: ref50
– volume-title: Information Theory and Statistics
  year: 1959
  ident: ref10
– ident: ref1
  doi: 10.1007/978-1-4757-3264-1
– ident: ref11
  doi: 10.1023/A:1007330508534
– start-page: 839
  volume-title: Proc. 17th Int’l Conf. Machine Learning
  ident: ref22
  article-title: Less Is More: Active Learning with Support Vector Machines
– ident: ref5
  doi: 10.1145/1141277.1141314
– volume-title: Proc. Ann. Conf. Advances in Neural Information Processing Systems (NIPS ’05)
  ident: ref30
  article-title: Query by Committee Made Real
– start-page: 111
  volume-title: Proc. 17th Int’l Conf. Machine Learning
  ident: ref23
  article-title: Query Learning with Large Margin Classifiers
– ident: ref21
  doi: 10.1109/ICCV.2003.1238391
– start-page: 444
  volume-title: Proc. 16th Int’l Conf. Machine Learning
  ident: ref49
  article-title: Machine-Learning Applications of Algorithmic Randomness
– ident: ref25
  doi: 10.1109/TPAMI.2004.1262340
– ident: ref16
  doi: 10.1162/neco.1992.4.4.590
– ident: ref28
  doi: 10.1109/ICASSP.2003.1198771
– ident: ref31
  doi: 10.1007/11503415_17
– volume-title: PhD dissertation
  year: 2004
  ident: ref24
  article-title: Active Learning with Kernel Machines
– start-page: 722
  volume-title: Proc. 16th Int’l Joint Conf. Artificial Intelligence
  ident: ref52
  article-title: Transduction with Confidence and Credibility
– ident: ref53
  doi: 10.1007/3-540-44795-4_31
– ident: ref9
  doi: 10.1016/S0304-3975(02)00100-7
– volume: 2
  start-page: 45
  year: 2001
  ident: ref6
  article-title: Support Vector Machine Active Learning with Applications to Text Classification
  publication-title: J. Machine Learning Research
– start-page: 1
  volume-title: Proc. 15th Int’l Conf. Machine Learning
  ident: ref26
  article-title: Query Learning Strategies Using Boosting and Bagging
– start-page: 255
  year: 2004
  ident: ref43
  article-title: Online Choice of Active Learning Algorithms
  publication-title: J. Machine Learning Research
– ident: ref60
  doi: 10.1023/A:1007618119488
– ident: ref12
  doi: 10.1613/jair.295
– ident: ref61
  doi: 10.1023/A:1022606404104
– ident: ref14
  doi: 10.1109/TPAMI.2006.156
– ident: ref33
  doi: 10.1007/11564096_28
SSID ssj0014503
Score 2.1730974
Snippet There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1557
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Bayesian methods
Classification
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Feasibility
Frequency
Inference
Inference algorithms
Information Storage and Retrieval - methods
Information systems. Data bases
Labeling
Learning
Machine learning
Mathematics
Memory organisation. Data processing
Pattern analysis
Pattern Recognition, Automated - methods
Probability and statistics
Query processing
Sampling methods
Sampling theory, sample surveys
Sciences and techniques of general use
Sensitivity and Specificity
Software
Statistical
Statistical analysis
Statistics
Support vector machine classification
Support vector machines
Tasks
Testing
Utilities
Title Query by Transduction
URI https://ieeexplore.ieee.org/document/4384495
https://www.ncbi.nlm.nih.gov/pubmed/18617715
https://www.proquest.com/docview/862353318
https://www.proquest.com/docview/34440474
https://www.proquest.com/docview/69318006
https://www.proquest.com/docview/875063726
https://www.proquest.com/docview/903644078
Volume 30
WOSCitedRecordID wos000257504400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9U-tA-qFVb49VrHvpSaHq57GZn8yjFw0IrFmy5t7DZzIJQ7uQ-BP97ZzcfKvSEkpfATkIyO5OZX2Z3fgCfdJU5qRwmtUCbSFIqqWSOicTccXYhchd2uf75gZeXejotrrbgS78XhojC4jP66k9DLb-e27X_VTaSQktO6LdhG1E1e7X6ioHMAwsyZzDs4QwjupJkWoyur85-fm-6FSJHwEAOozlyo-fCfRKNAr2KXxxplqwf1xBbbM48QwSa7P3fs-_DbptpxmeNabyFLZodwF7H4hC3Tn0Ab560JDyEo19rWtzH1X0coljdNJc9gt-T8-tvF0lLnZBYxrurxGmHxirB6G1cG1VnOjeKU1PpBBltMqtoXDghOfxXDKlEWmnpLFrLD4mWtHgHO7P5jI4hlkSSLKNGBiqSj0IbRTVluUGbF1kdwahTYWnbvuKe3uJvGfBFWpRB_57vEsug_wg-91fcNj01XpA99Lrs5Vo1RjB8Nkv9eOYTugzTCAbdtJWtVy5LRm-CDXCsI_jYj7I7-RqJmdF8vSyF9A0TUW6WUAXfgL9VEcQbJBgCcuKH2QsihS__-hJqBO8bm3rURGuaJ_9-8wG87paspOMPsLNarOkUXtm71c1yMWTPmOph8IwHJxYFXw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sLVQftNVTo63moS-Fxkuym93No4ii9DwsXItvYbOZBUHu5H4I_vfObn5owRMkL4FMQjLZyXxfZnc-gB-qTC0XVkYVkybiKERU8kxGXGaW0AXLrF_l-m8gh0N1c5Nfr8Cvbi0MIvrJZ3jsdn0tv5qYhftV1udMcQL0H-CjU85K6tVaXc2AZ14HmTAMxTgRibYoGef90fXJ1WXdr1BSDvTyMIpyt3RquC_ykRdYcdMj9Yw8ZGtpi-XY0-eg88333f0X2GiwZnhSD46vsILjLdhsdRzCJqy3YP1FU8Jt6P1Z4PQxLB9Dn8equr1sD_6en41OL6JGPCEyxHjnkVVWaiMY8bek0qJKVaYFgVNuGWqlUyMwyS3jBABKIlUsLhW3RhpDNykNKrYDq-PJGPcg5IgcDfFGoiqctlxpgRWmmZYmy9MqgH7rwsI0ncWdwMVd4RlGnBfe_07xUhbe_wH87M64r7tqvGG77XzZ2TVuDODwv7fUHU8dpEtlHMBB-9qKJi5nBfE3RkMwUQEcdUcpoFyVRI9xspgVjLuWiZIvtxA5XYC-VgGESyyIBBL0k-kbJrkrALsiagC79Zh69kQzNPdff_Ij-HwxuhoUg8vh7wNYayewxMk3WJ1PF_gdPpmH-e1seujj4wm3gQe-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query+by+Transduction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ho%2C+Shen-Shyang&rft.au=Wechsler%2C+H&rft.date=2008-09-01&rft.issn=0162-8828&rft.volume=30&rft.issue=9&rft.spage=1557&rft.epage=1571&rft_id=info:doi/10.1109%2FTPAMI.2007.70811&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon