Query by Transduction
There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT qu...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 9; pp. 1557 - 1571 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Los Alamitos, CA
IEEE
01.09.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0162-8828 1939-3539 |
| DOI: | 10.1109/TPAMI.2007.70811 |