Monomial codes seen as invariant subspaces

It is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Open mathematics (Warsaw, Poland) Ročník 15; číslo 1; s. 1099 - 1107
Hlavní autoři: García-Planas, María Isabel, Magret, Maria Dolors, Um, Laurence Emilie
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Warsaw De Gruyter Open 01.01.2017
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
De Gruyter
Témata:
ISSN:2391-5455, 2391-5455
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship is presented between monomial codes over a finite field 𝔽 and hyperinvariant subspaces of 𝔽 under an appropriate linear transformation. Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes, generalizing known results on cyclic codes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2017-0093