Polynomial Factorization Over Henselian Fields

We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 25; číslo 2; s. 631 - 681
Hlavní autori: Alberich-Carramiñana, Maria, Guàrdia, Jordi, Nart, Enric, Poteaux, Adrien, Roé, Joaquim, Weimann, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2025
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10 ), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.
AbstractList We present an algorithm that, given an irreducible polynomial g over a general valued field (K, v), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.
We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10 ), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.
Given a valued field $(K,v)$ and an irreducible polynomial $g\in K[x]$, we survey the ideas of Ore, Maclane, Okutsu, Montes, Vaqui\'e and Herrera-Olalla-Mahboub-Spivakovsky, leading (under certain conditions) to an algorithm to find the factorization of $g$ over a henselization of $(K,v)$.
Author Roé, Joaquim
Poteaux, Adrien
Weimann, Martin
Nart, Enric
Alberich-Carramiñana, Maria
Guàrdia, Jordi
Author_xml – sequence: 1
  givenname: Maria
  surname: Alberich-Carramiñana
  fullname: Alberich-Carramiñana, Maria
  organization: Institut de Robòtica i Informàtica Industrial (IRI, CSIC-UPC), Institut de Matemátiques de la UPC-BarcelonaTech (IMTech) and Departament de Matemàtiques, Universitat Politècnica de Catalunya. BarcelonaTech
– sequence: 2
  givenname: Jordi
  surname: Guàrdia
  fullname: Guàrdia, Jordi
  organization: Departament de Matemàtiques, Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú
– sequence: 3
  givenname: Enric
  surname: Nart
  fullname: Nart, Enric
  organization: Departament de Matemàtiques, Universitat Autònoma de Barcelona
– sequence: 4
  givenname: Adrien
  surname: Poteaux
  fullname: Poteaux, Adrien
  organization: Université de Lille, CNRS,Centrale Lille, UMR 9189 CRIStAL
– sequence: 5
  givenname: Joaquim
  surname: Roé
  fullname: Roé, Joaquim
  organization: Departament de Matemàtiques, Universitat Autònoma de Barcelona
– sequence: 6
  givenname: Martin
  surname: Weimann
  fullname: Weimann, Martin
  email: martin.weimann@unicaen.fr
  organization: LMNO, UMR 6139, Université de Caen-Normandie
BackLink https://inria.hal.science/hal-03962819$$DView record in HAL
BookMark eNp9kE1PAjEQhhuDiYj-AU8knjws9mPbbY-EiJiQ4EHPTdvtasnSYrsQ8Ne7sAYTD5xmMnmfmclzDXo-eAvAHYIjBGHxmBDEkGcQ5xkULGfZ7gL0EUM0I4ST3qkv6BW4TmkJIaIC5X0weg313oeVU_VwqkwTovtWjQt-uNjaOJxZn2ztlB9Ona3LdAMuK1Une_tbB-B9-vQ2mWXzxfPLZDzPTM5Ek5UMW6qR1kZgaDHVnFGrS625QbkuiaGsUFDbStPKMM1LZhCnwhIkSqKVIAPw0O39VLVcR7dScS-DcnI2nsvDDBLBMEdii9rsfZddx_C1samRy7CJvn1PEsRxQSkqDincpUwMKUVbndYiKA8OZedQtg7l0aHctRD_BxnXHPU0Ubn6PEo6NLV3_IeNf1-doX4Av76IBw
CitedBy_id crossref_primary_10_1007_s00200_024_00669_z
crossref_primary_10_1017_S0013091524000889
Cites_doi 10.1112/S1461157013000089
10.2140/pjm.2022.319.189
10.1145/3476446.3535487
10.5427/jsing.2022.25k
10.1215/S0012-7094-36-00243-0
10.2307/2372438
10.1007/s10208-012-9137-5
10.4064/bc108-0-17
10.2140/pjm.2021.311.165
10.1007/978-3-642-65505-0
10.1016/j.jnt.2014.07.027
10.1016/j.jsc.2017.07.012
10.1007/BF02403925
10.5802/ahl.97
10.1016/j.jnt.2016.01.011
10.1016/j.jpaa.2020.106644
10.1016/j.jalgebra.2021.10.041
10.5565/PUBLMAT6412009
10.1016/0022-4049(94)00129-5
10.1080/00927872.2017.1407423
10.1090/conm/637/12767
10.1016/j.jalgebra.2019.08.033
10.1090/S0002-9947-07-04184-0
10.1016/0001-8708(89)90009-1
10.4171/149-1/20
10.1090/S0002-9947-2011-05442-5
10.5802/jtnb.782
10.1090/S0002-9947-1936-1501879-8
10.1016/j.aim.2023.109153
10.1016/j.jalgebra.2022.09.014
10.4064/aa145-1-5
10.1090/S0002-9947-04-03463-4
10.1016/j.jalgebra.2007.02.022
10.1007/BF01459087
10.1016/j.jalgebra.2007.02.038
10.1007/978-3-540-37663-7
ContentType Journal Article
Copyright SFoCM 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Attribution
Copyright_xml – notice: SFoCM 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
– notice: Attribution
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
DOI 10.1007/s10208-024-09646-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 681
ExternalDocumentID oai:HAL:hal-03962819v1
10_1007_s10208_024_09646_x
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c469t-d62e5b1bbc920e25b865ebdbb8c14bd3c567a0befb5fc6b8d6c1859e319d3ba93
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Tue Oct 14 20:13:39 EDT 2025
Fri Jul 25 19:36:51 EDT 2025
Sat Nov 29 08:03:55 EST 2025
Tue Nov 18 20:04:14 EST 2025
Sat Mar 29 01:21:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Newton polygon
OM-algorithm
Valuation
Henselian field
12Y05
Key polynomial
13P05
14Q15
13A18
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d62e5b1bbc920e25b865ebdbb8c14bd3c567a0befb5fc6b8d6c1859e319d3ba93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://inria.hal.science/hal-03962819
PQID 3182755171
PQPubID 43692
PageCount 51
ParticipantIDs hal_primary_oai_HAL_hal_03962819v1
proquest_journals_3182755171
crossref_primary_10_1007_s10208_024_09646_x
crossref_citationtrail_10_1007_s10208_024_09646_x
springer_journals_10_1007_s10208_024_09646_x
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References D Duval (9646_CR8) 1989; 70
E Nart (9646_CR30) 2023; 428
M Vaquié (9646_CR44) 2007; 359
J-D Bauch (9646_CR6) 2016; 165
J Guàrdia (9646_CR14) 2012; 364
J Novacoski (9646_CR34) 2016; 108
HD Stainsby (9646_CR42) 2018; 87
9646_CR41
9646_CR21
9646_CR43
9646_CR22
N Moraes de Oliveira (9646_CR25) 2020; 541
9646_CR23
9646_CR4
9646_CR24
9646_CR5
A Jakhar (9646_CR11) 2018; 46–7
J Guàrdia (9646_CR12) 2010; 145
Ø Ore (9646_CR37) 1928; 99
9646_CR9
E Nart (9646_CR27) 2020; 64
J Guàrdia (9646_CR15) 2013; 13
J Novacoski (9646_CR32) 2021; 225
J Guàrdia (9646_CR13) 2011; 23
K Okutsu (9646_CR35) 1982; 58
SS Abhyankar (9646_CR3) 1973; 260
J-D Bauch (9646_CR7) 2013; 16
A Poteaux (9646_CR39) 2021; 4
M Vaquié (9646_CR45) 2007; 311
N Moraes de Oliveira (9646_CR26) 2021; 225–9
J Guàrdia (9646_CR16) 2015; 147
9646_CR10
Ø Ore (9646_CR36) 1923; 44
9646_CR33
SS Abhyankar (9646_CR1) 1957; 79
A Poteaux (9646_CR40) 2022; 31
SS Abhyankar (9646_CR2) 1989; 35
E Nart (9646_CR29) 2022; 319
9646_CR18
9646_CR19
J Guàrdia (9646_CR17) 2015; 637
J Neukirch (9646_CR31) 1992
E Nart (9646_CR28) 2021; 311–1
P Popescu-Pampu (9646_CR38) 2002; 33
F-V Kuhlmann (9646_CR20) 2004; 356
References_xml – volume: 16
  start-page: 139
  year: 2013
  ident: 9646_CR7
  publication-title: LMS J. of Comp. and Math.
  doi: 10.1112/S1461157013000089
– volume: 319
  start-page: 189
  year: 2022
  ident: 9646_CR29
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2022.319.189
– ident: 9646_CR41
  doi: 10.1145/3476446.3535487
– ident: 9646_CR19
  doi: 10.5427/jsing.2022.25k
– ident: 9646_CR23
  doi: 10.1215/S0012-7094-36-00243-0
– volume: 79
  start-page: 825
  year: 1957
  ident: 9646_CR1
  publication-title: Amer. J. Math.
  doi: 10.2307/2372438
– volume: 13
  start-page: 729
  year: 2013
  ident: 9646_CR15
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-012-9137-5
– ident: 9646_CR24
– volume: 108
  start-page: 231
  year: 2016
  ident: 9646_CR34
  publication-title: Banach Center Publ.
  doi: 10.4064/bc108-0-17
– volume: 311–1
  start-page: 165
  year: 2021
  ident: 9646_CR28
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2021.311.165
– volume: 58
  start-page: 87
  issue: 47–49
  year: 1982
  ident: 9646_CR35
  publication-title: Proc. Japan Acad. Ser. A
– ident: 9646_CR9
  doi: 10.1007/978-3-642-65505-0
– volume: 147
  start-page: 549
  year: 2015
  ident: 9646_CR16
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2014.07.027
– volume: 87
  start-page: 140
  year: 2018
  ident: 9646_CR42
  publication-title: J. Symb. Comp.
  doi: 10.1016/j.jsc.2017.07.012
– volume: 31
  start-page: 1
  issue: 6
  year: 2022
  ident: 9646_CR40
  publication-title: Comput. Complexity
– volume: 70
  start-page: 119
  issue: 2
  year: 1989
  ident: 9646_CR8
  publication-title: Compositio Math.
– volume: 44
  start-page: 219
  year: 1923
  ident: 9646_CR36
  publication-title: Acta Math.
  doi: 10.1007/BF02403925
– volume: 4
  start-page: 1061
  year: 2021
  ident: 9646_CR39
  publication-title: Ann. Henri Leb.
  doi: 10.5802/ahl.97
– volume: 165
  start-page: 382
  year: 2016
  ident: 9646_CR6
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2016.01.011
– volume: 225–9
  year: 2021
  ident: 9646_CR26
  publication-title: J. Pure Appl. Algebra
– volume: 225
  year: 2021
  ident: 9646_CR32
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2020.106644
– ident: 9646_CR5
  doi: 10.1016/j.jalgebra.2021.10.041
– volume: 33
  start-page: 1
  year: 2002
  ident: 9646_CR38
  publication-title: Fields Inst. Comm.
– volume: 64
  start-page: 195
  year: 2020
  ident: 9646_CR27
  publication-title: Publ. Mat.
  doi: 10.5565/PUBLMAT6412009
– ident: 9646_CR21
  doi: 10.1016/0022-4049(94)00129-5
– volume: 46–7
  start-page: 3205
  year: 2018
  ident: 9646_CR11
  publication-title: Comm. Alg.
  doi: 10.1080/00927872.2017.1407423
– volume: 637
  start-page: 207
  year: 2015
  ident: 9646_CR17
  publication-title: Contemp. Math.
  doi: 10.1090/conm/637/12767
– volume: 541
  start-page: 270
  year: 2020
  ident: 9646_CR25
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2019.08.033
– volume: 359
  start-page: 3439
  issue: 7
  year: 2007
  ident: 9646_CR44
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-07-04184-0
– volume: 35
  start-page: 190
  year: 1989
  ident: 9646_CR2
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(89)90009-1
– ident: 9646_CR33
  doi: 10.4171/149-1/20
– volume: 364
  start-page: 361
  issue: 1
  year: 2012
  ident: 9646_CR14
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-2011-05442-5
– volume: 260
  start-page: 47
  year: 1973
  ident: 9646_CR3
  publication-title: J. Reine Angew. Math.
– volume: 23
  start-page: 667
  issue: 3
  year: 2011
  ident: 9646_CR13
  publication-title: J. Théor. Nombres Bordeaux
  doi: 10.5802/jtnb.782
– ident: 9646_CR22
  doi: 10.1090/S0002-9947-1936-1501879-8
– volume: 428
  year: 2023
  ident: 9646_CR30
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2023.109153
– ident: 9646_CR4
  doi: 10.1016/j.jalgebra.2022.09.014
– volume: 145
  start-page: 83
  year: 2010
  ident: 9646_CR12
  publication-title: Acta Arith.
  doi: 10.4064/aa145-1-5
– volume: 356
  start-page: 4559
  issue: 11
  year: 2004
  ident: 9646_CR20
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-04-03463-4
– ident: 9646_CR18
  doi: 10.1016/j.jalgebra.2007.02.022
– ident: 9646_CR10
– volume: 99
  start-page: 84
  year: 1928
  ident: 9646_CR37
  publication-title: Math. Ann.
  doi: 10.1007/BF01459087
– ident: 9646_CR43
– volume: 311
  start-page: 859
  issue: 2
  year: 2007
  ident: 9646_CR45
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2007.02.038
– volume-title: Algebraische Zahlentheorie
  year: 1992
  ident: 9646_CR31
  doi: 10.1007/978-3-540-37663-7
SSID ssj0015914
ssib031263371
Score 2.3855662
Snippet We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization...
We present an algorithm that, given an irreducible polynomial g over a general valued field (K, v), finds the factorization of g over the Henselianization of K...
Given a valued field $(K,v)$ and an irreducible polynomial $g\in K[x]$, we survey the ideas of Ore, Maclane, Okutsu, Montes, Vaqui\'e and...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Algorithms
Applications of Mathematics
Computer Science
Context
Economics
Factorization
Hyperspaces
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Symbolic Computation
Title Polynomial Factorization Over Henselian Fields
URI https://link.springer.com/article/10.1007/s10208-024-09646-x
https://www.proquest.com/docview/3182755171
https://inria.hal.science/hal-03962819
Volume 25
WOSCitedRecordID wos001168387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXB6VScTinim0bWNG3TxyGWPcw5_GJvZfkoCqOTdQ79771kaTdFBaVvuTQtd7ncL9wXQqeUDJqcSomFGigMFp9hFnEPS7hqpIxGTKama0kn7HZZvx_1bFJYXkS7Fy5Jc1IvJLsR7aonFAPspgEG5LgC5o7phg23d4-l78CPTEVvDWWw54W-TZX5fo1P5mj5SQdDLiDNL85RY3Pi6v_-dgttWozptGabYhstqayGqhZvOlabcxgqWjoUYzW0ViQqA3njuizpmu-gi95o-K5JsHJsmvTYDE7nBrTBaSuT2j7InFjHxOW76CG-ur9sY9tsAQu4IU-wDIjyucu5iEhTEZ-zwFdccs6ES7n0hB-EIFaVcj8VAWcyEGDqIwUqLD0-iLw9VMlGmdpHDlw5qeBpSoWvKDwgcEk5JzQQgI5dUUduwfNE2ErkuiHGMJnXUNbcS4B7ieFe8lZHZ-U7L7M6HL_OPgFRlhN1Ce12q5PosaYXBdp5OHXrqFFIOrGKmydwxJEQUGQI5PNCsnPyz588-Nv0Q7ROdCdhEwPUQJXJ-FUdoVUxnTzn42OzoT8AfiPvCQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CuqDt1ituohvGulms9djEUvFthat4ltojkWhVHFr0X_vJM3WAxWUfctks8tMJvOFuQAOGO1VBVOKSN3TBC1-QpJUBEThVSNLWJqozHYtacbtdnJ7m3ZcUlheRLsXLkl7Un9IdqPGVU8ZQdjNIoLIcYahxTIV8y-vbia-gzC1Fb0NlCFBEIcuVeb7NT6Zo-k7Ewz5AWl-cY5am1Nf-t_fLsOiw5hebbwpVmBKD1ZhyeFNz2lzjkNFS4dibBXmikRlJC-0JiVd8zU47jz0Xw0JV67bJj0ug9O7QG3wGtqmtvcGXt3ExOXrcF0_7Z40iGu2QCTekIdERVSHwhdCprSqaSiSKNRCCZFInwkVyDCKUaw6E2EmI5GoSKKpTzWqsApELw02oDR4GOhN8PDKyaTIMiZDzfBBgSsmBGWRRHTsyzL4Bc-5dJXITUOMPn-voWy4x5F73HKPv5ThcPLO47gOx6-z91GUk4mmhHaj1uRmrBqkkXEejvwyVApJc6e4OccjjsaIImMkHxWSfSf__Mmtv03fg7lGt9XkzbP2-TbMU9NV2MYDVaA0fHrWOzArR8P7_GnXbu43uhvx7Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB688HiwnljPIL7parPZXI-ihoq1FjzwbekeQUHSYqrov3d2m7RVVBDJ285ms8zsZL9hLoA9Rts1wZQiUrc1wRs_IlEsPKLQ1EgjFkcqtV1LGmGzGd3fx62RLH4b7V66JPs5DaZKU9Y76qr0aCTxjRq3PWUEITgLCKLISWYC6Y29fn038CP4sa3ubWAN8bzQL9Jmvl_j09U0_mACI0dQ5xdHqb1_ksr_d74A8wX2dI77h2URxnS2BJUChzqFluc4VLZ6KMeWYKZMYEby3OWg1Gu-DIetztO7IeHKiW3eU2R2OleoJU5d25T3duYkJlYuX4Hb5OzmpE6KJgxEouXcIyqg2heuEDKmNU19EQW-FkqISLpMKE_6QYji1qnwUxmISAUSIUCsUbWVJ9qxtwoTWSfTa-CgKcqkSFMmfc3wwYOgmBCUBRJRsyur4Jb857KoUG4aZTzxYW1lwz2O3OOWe_ytCvuDd7r9-hy_zt5FsQ4mmtLa9eMGN2M1Lw6MU_HVrcJmKXVeKHTO8ddHQ0SXIZIPSikPyT9_cv1v03dgunWa8MZ582IDZqlpNmzDhDZhovf8ordgSr72HvPnbXvOPwAFWvrR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+Factorization+Over+Henselian+Fields&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Alberich-Carrami%C3%B1ana%2C+Maria&rft.au=Gu%C3%A0rdia%2C+Jordi&rft.au=Nart%2C+Enric&rft.au=Poteaux%2C+Adrien&rft.date=2025-04-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=25&rft.issue=2&rft.spage=631&rft.epage=681&rft_id=info:doi/10.1007%2Fs10208-024-09646-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_024_09646_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon