Polynomial Factorization Over Henselian Fields
We present an algorithm that, given an irreducible polynomial g over a general valued field ( K , v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herre...
Uložené v:
| Vydané v: | Foundations of computational mathematics Ročník 25; číslo 2; s. 631 - 681 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2025
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present an algorithm that, given an irreducible polynomial
g
over a general valued field (
K
,
v
), finds the factorization of
g
over the Henselianization of
K
under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem
4.10
), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory. |
|---|---|
| AbstractList | We present an algorithm that, given an irreducible polynomial g over a general valued field (K, v), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory. We present an algorithm that, given an irreducible polynomial g over a general valued field ( K , v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10 ), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory. Given a valued field $(K,v)$ and an irreducible polynomial $g\in K[x]$, we survey the ideas of Ore, Maclane, Okutsu, Montes, Vaqui\'e and Herrera-Olalla-Mahboub-Spivakovsky, leading (under certain conditions) to an algorithm to find the factorization of $g$ over a henselization of $(K,v)$. |
| Author | Roé, Joaquim Poteaux, Adrien Weimann, Martin Nart, Enric Alberich-Carramiñana, Maria Guàrdia, Jordi |
| Author_xml | – sequence: 1 givenname: Maria surname: Alberich-Carramiñana fullname: Alberich-Carramiñana, Maria organization: Institut de Robòtica i Informàtica Industrial (IRI, CSIC-UPC), Institut de Matemátiques de la UPC-BarcelonaTech (IMTech) and Departament de Matemàtiques, Universitat Politècnica de Catalunya. BarcelonaTech – sequence: 2 givenname: Jordi surname: Guàrdia fullname: Guàrdia, Jordi organization: Departament de Matemàtiques, Escola Politècnica Superior d’Enginyeria de Vilanova i la Geltrú – sequence: 3 givenname: Enric surname: Nart fullname: Nart, Enric organization: Departament de Matemàtiques, Universitat Autònoma de Barcelona – sequence: 4 givenname: Adrien surname: Poteaux fullname: Poteaux, Adrien organization: Université de Lille, CNRS,Centrale Lille, UMR 9189 CRIStAL – sequence: 5 givenname: Joaquim surname: Roé fullname: Roé, Joaquim organization: Departament de Matemàtiques, Universitat Autònoma de Barcelona – sequence: 6 givenname: Martin surname: Weimann fullname: Weimann, Martin email: martin.weimann@unicaen.fr organization: LMNO, UMR 6139, Université de Caen-Normandie |
| BackLink | https://inria.hal.science/hal-03962819$$DView record in HAL |
| BookMark | eNp9kE1PAjEQhhuDiYj-AU8knjws9mPbbY-EiJiQ4EHPTdvtasnSYrsQ8Ne7sAYTD5xmMnmfmclzDXo-eAvAHYIjBGHxmBDEkGcQ5xkULGfZ7gL0EUM0I4ST3qkv6BW4TmkJIaIC5X0weg313oeVU_VwqkwTovtWjQt-uNjaOJxZn2ztlB9Ona3LdAMuK1Une_tbB-B9-vQ2mWXzxfPLZDzPTM5Ek5UMW6qR1kZgaDHVnFGrS625QbkuiaGsUFDbStPKMM1LZhCnwhIkSqKVIAPw0O39VLVcR7dScS-DcnI2nsvDDBLBMEdii9rsfZddx_C1samRy7CJvn1PEsRxQSkqDincpUwMKUVbndYiKA8OZedQtg7l0aHctRD_BxnXHPU0Ubn6PEo6NLV3_IeNf1-doX4Av76IBw |
| CitedBy_id | crossref_primary_10_1007_s00200_024_00669_z crossref_primary_10_1017_S0013091524000889 |
| Cites_doi | 10.1112/S1461157013000089 10.2140/pjm.2022.319.189 10.1145/3476446.3535487 10.5427/jsing.2022.25k 10.1215/S0012-7094-36-00243-0 10.2307/2372438 10.1007/s10208-012-9137-5 10.4064/bc108-0-17 10.2140/pjm.2021.311.165 10.1007/978-3-642-65505-0 10.1016/j.jnt.2014.07.027 10.1016/j.jsc.2017.07.012 10.1007/BF02403925 10.5802/ahl.97 10.1016/j.jnt.2016.01.011 10.1016/j.jpaa.2020.106644 10.1016/j.jalgebra.2021.10.041 10.5565/PUBLMAT6412009 10.1016/0022-4049(94)00129-5 10.1080/00927872.2017.1407423 10.1090/conm/637/12767 10.1016/j.jalgebra.2019.08.033 10.1090/S0002-9947-07-04184-0 10.1016/0001-8708(89)90009-1 10.4171/149-1/20 10.1090/S0002-9947-2011-05442-5 10.5802/jtnb.782 10.1090/S0002-9947-1936-1501879-8 10.1016/j.aim.2023.109153 10.1016/j.jalgebra.2022.09.014 10.4064/aa145-1-5 10.1090/S0002-9947-04-03463-4 10.1016/j.jalgebra.2007.02.022 10.1007/BF01459087 10.1016/j.jalgebra.2007.02.038 10.1007/978-3-540-37663-7 |
| ContentType | Journal Article |
| Copyright | SFoCM 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 Attribution |
| Copyright_xml | – notice: SFoCM 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 – notice: Attribution |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC |
| DOI | 10.1007/s10208-024-09646-x |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 681 |
| ExternalDocumentID | oai:HAL:hal-03962819v1 10_1007_s10208_024_09646_x |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c469t-d62e5b1bbc920e25b865ebdbb8c14bd3c567a0befb5fc6b8d6c1859e319d3ba93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Tue Oct 14 20:13:39 EDT 2025 Fri Jul 25 19:36:51 EDT 2025 Sat Nov 29 08:03:55 EST 2025 Tue Nov 18 20:04:14 EST 2025 Sat Mar 29 01:21:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Newton polygon OM-algorithm Valuation Henselian field 12Y05 Key polynomial 13P05 14Q15 13A18 |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-d62e5b1bbc920e25b865ebdbb8c14bd3c567a0befb5fc6b8d6c1859e319d3ba93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://inria.hal.science/hal-03962819 |
| PQID | 3182755171 |
| PQPubID | 43692 |
| PageCount | 51 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03962819v1 proquest_journals_3182755171 crossref_primary_10_1007_s10208_024_09646_x crossref_citationtrail_10_1007_s10208_024_09646_x springer_journals_10_1007_s10208_024_09646_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | D Duval (9646_CR8) 1989; 70 E Nart (9646_CR30) 2023; 428 M Vaquié (9646_CR44) 2007; 359 J-D Bauch (9646_CR6) 2016; 165 J Guàrdia (9646_CR14) 2012; 364 J Novacoski (9646_CR34) 2016; 108 HD Stainsby (9646_CR42) 2018; 87 9646_CR41 9646_CR21 9646_CR43 9646_CR22 N Moraes de Oliveira (9646_CR25) 2020; 541 9646_CR23 9646_CR4 9646_CR24 9646_CR5 A Jakhar (9646_CR11) 2018; 46–7 J Guàrdia (9646_CR12) 2010; 145 Ø Ore (9646_CR37) 1928; 99 9646_CR9 E Nart (9646_CR27) 2020; 64 J Guàrdia (9646_CR15) 2013; 13 J Novacoski (9646_CR32) 2021; 225 J Guàrdia (9646_CR13) 2011; 23 K Okutsu (9646_CR35) 1982; 58 SS Abhyankar (9646_CR3) 1973; 260 J-D Bauch (9646_CR7) 2013; 16 A Poteaux (9646_CR39) 2021; 4 M Vaquié (9646_CR45) 2007; 311 N Moraes de Oliveira (9646_CR26) 2021; 225–9 J Guàrdia (9646_CR16) 2015; 147 9646_CR10 Ø Ore (9646_CR36) 1923; 44 9646_CR33 SS Abhyankar (9646_CR1) 1957; 79 A Poteaux (9646_CR40) 2022; 31 SS Abhyankar (9646_CR2) 1989; 35 E Nart (9646_CR29) 2022; 319 9646_CR18 9646_CR19 J Guàrdia (9646_CR17) 2015; 637 J Neukirch (9646_CR31) 1992 E Nart (9646_CR28) 2021; 311–1 P Popescu-Pampu (9646_CR38) 2002; 33 F-V Kuhlmann (9646_CR20) 2004; 356 |
| References_xml | – volume: 16 start-page: 139 year: 2013 ident: 9646_CR7 publication-title: LMS J. of Comp. and Math. doi: 10.1112/S1461157013000089 – volume: 319 start-page: 189 year: 2022 ident: 9646_CR29 publication-title: Pacific J. Math. doi: 10.2140/pjm.2022.319.189 – ident: 9646_CR41 doi: 10.1145/3476446.3535487 – ident: 9646_CR19 doi: 10.5427/jsing.2022.25k – ident: 9646_CR23 doi: 10.1215/S0012-7094-36-00243-0 – volume: 79 start-page: 825 year: 1957 ident: 9646_CR1 publication-title: Amer. J. Math. doi: 10.2307/2372438 – volume: 13 start-page: 729 year: 2013 ident: 9646_CR15 publication-title: Found. Comput. Math. doi: 10.1007/s10208-012-9137-5 – ident: 9646_CR24 – volume: 108 start-page: 231 year: 2016 ident: 9646_CR34 publication-title: Banach Center Publ. doi: 10.4064/bc108-0-17 – volume: 311–1 start-page: 165 year: 2021 ident: 9646_CR28 publication-title: Pacific J. Math. doi: 10.2140/pjm.2021.311.165 – volume: 58 start-page: 87 issue: 47–49 year: 1982 ident: 9646_CR35 publication-title: Proc. Japan Acad. Ser. A – ident: 9646_CR9 doi: 10.1007/978-3-642-65505-0 – volume: 147 start-page: 549 year: 2015 ident: 9646_CR16 publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.07.027 – volume: 87 start-page: 140 year: 2018 ident: 9646_CR42 publication-title: J. Symb. Comp. doi: 10.1016/j.jsc.2017.07.012 – volume: 31 start-page: 1 issue: 6 year: 2022 ident: 9646_CR40 publication-title: Comput. Complexity – volume: 70 start-page: 119 issue: 2 year: 1989 ident: 9646_CR8 publication-title: Compositio Math. – volume: 44 start-page: 219 year: 1923 ident: 9646_CR36 publication-title: Acta Math. doi: 10.1007/BF02403925 – volume: 4 start-page: 1061 year: 2021 ident: 9646_CR39 publication-title: Ann. Henri Leb. doi: 10.5802/ahl.97 – volume: 165 start-page: 382 year: 2016 ident: 9646_CR6 publication-title: J. Number Theory doi: 10.1016/j.jnt.2016.01.011 – volume: 225–9 year: 2021 ident: 9646_CR26 publication-title: J. Pure Appl. Algebra – volume: 225 year: 2021 ident: 9646_CR32 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2020.106644 – ident: 9646_CR5 doi: 10.1016/j.jalgebra.2021.10.041 – volume: 33 start-page: 1 year: 2002 ident: 9646_CR38 publication-title: Fields Inst. Comm. – volume: 64 start-page: 195 year: 2020 ident: 9646_CR27 publication-title: Publ. Mat. doi: 10.5565/PUBLMAT6412009 – ident: 9646_CR21 doi: 10.1016/0022-4049(94)00129-5 – volume: 46–7 start-page: 3205 year: 2018 ident: 9646_CR11 publication-title: Comm. Alg. doi: 10.1080/00927872.2017.1407423 – volume: 637 start-page: 207 year: 2015 ident: 9646_CR17 publication-title: Contemp. Math. doi: 10.1090/conm/637/12767 – volume: 541 start-page: 270 year: 2020 ident: 9646_CR25 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2019.08.033 – volume: 359 start-page: 3439 issue: 7 year: 2007 ident: 9646_CR44 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-07-04184-0 – volume: 35 start-page: 190 year: 1989 ident: 9646_CR2 publication-title: Adv. Math. doi: 10.1016/0001-8708(89)90009-1 – ident: 9646_CR33 doi: 10.4171/149-1/20 – volume: 364 start-page: 361 issue: 1 year: 2012 ident: 9646_CR14 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-2011-05442-5 – volume: 260 start-page: 47 year: 1973 ident: 9646_CR3 publication-title: J. Reine Angew. Math. – volume: 23 start-page: 667 issue: 3 year: 2011 ident: 9646_CR13 publication-title: J. Théor. Nombres Bordeaux doi: 10.5802/jtnb.782 – ident: 9646_CR22 doi: 10.1090/S0002-9947-1936-1501879-8 – volume: 428 year: 2023 ident: 9646_CR30 publication-title: Adv. Math. doi: 10.1016/j.aim.2023.109153 – ident: 9646_CR4 doi: 10.1016/j.jalgebra.2022.09.014 – volume: 145 start-page: 83 year: 2010 ident: 9646_CR12 publication-title: Acta Arith. doi: 10.4064/aa145-1-5 – volume: 356 start-page: 4559 issue: 11 year: 2004 ident: 9646_CR20 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-04-03463-4 – ident: 9646_CR18 doi: 10.1016/j.jalgebra.2007.02.022 – ident: 9646_CR10 – volume: 99 start-page: 84 year: 1928 ident: 9646_CR37 publication-title: Math. Ann. doi: 10.1007/BF01459087 – ident: 9646_CR43 – volume: 311 start-page: 859 issue: 2 year: 2007 ident: 9646_CR45 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2007.02.038 – volume-title: Algebraische Zahlentheorie year: 1992 ident: 9646_CR31 doi: 10.1007/978-3-540-37663-7 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.3855662 |
| Snippet | We present an algorithm that, given an irreducible polynomial
g
over a general valued field (
K
,
v
), finds the factorization of
g
over the Henselianization... We present an algorithm that, given an irreducible polynomial g over a general valued field (K, v), finds the factorization of g over the Henselianization of K... Given a valued field $(K,v)$ and an irreducible polynomial $g\in K[x]$, we survey the ideas of Ore, Maclane, Okutsu, Montes, Vaqui\'e and... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 631 |
| SubjectTerms | Algorithms Applications of Mathematics Computer Science Context Economics Factorization Hyperspaces Linear and Multilinear Algebras Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Polynomials Symbolic Computation |
| Title | Polynomial Factorization Over Henselian Fields |
| URI | https://link.springer.com/article/10.1007/s10208-024-09646-x https://www.proquest.com/docview/3182755171 https://inria.hal.science/hal-03962819 |
| Volume | 25 |
| WOSCitedRecordID | wos001168387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Journals customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXB6VScTinim0bWNG3TxyGWPcw5_GJvZfkoCqOTdQ79771kaTdFBaVvuTQtd7ncL9wXQqeUDJqcSomFGigMFp9hFnEPS7hqpIxGTKama0kn7HZZvx_1bFJYXkS7Fy5Jc1IvJLsR7aonFAPspgEG5LgC5o7phg23d4-l78CPTEVvDWWw54W-TZX5fo1P5mj5SQdDLiDNL85RY3Pi6v_-dgttWozptGabYhstqayGqhZvOlabcxgqWjoUYzW0ViQqA3njuizpmu-gi95o-K5JsHJsmvTYDE7nBrTBaSuT2j7InFjHxOW76CG-ur9sY9tsAQu4IU-wDIjyucu5iEhTEZ-zwFdccs6ES7n0hB-EIFaVcj8VAWcyEGDqIwUqLD0-iLw9VMlGmdpHDlw5qeBpSoWvKDwgcEk5JzQQgI5dUUduwfNE2ErkuiHGMJnXUNbcS4B7ieFe8lZHZ-U7L7M6HL_OPgFRlhN1Ce12q5PosaYXBdp5OHXrqFFIOrGKmydwxJEQUGQI5PNCsnPyz588-Nv0Q7ROdCdhEwPUQJXJ-FUdoVUxnTzn42OzoT8AfiPvCQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CuqDt1ituohvGulms9djEUvFthat4ltojkWhVHFr0X_vJM3WAxWUfctks8tMJvOFuQAOGO1VBVOKSN3TBC1-QpJUBEThVSNLWJqozHYtacbtdnJ7m3ZcUlheRLsXLkl7Un9IdqPGVU8ZQdjNIoLIcYahxTIV8y-vbia-gzC1Fb0NlCFBEIcuVeb7NT6Zo-k7Ewz5AWl-cY5am1Nf-t_fLsOiw5hebbwpVmBKD1ZhyeFNz2lzjkNFS4dibBXmikRlJC-0JiVd8zU47jz0Xw0JV67bJj0ug9O7QG3wGtqmtvcGXt3ExOXrcF0_7Z40iGu2QCTekIdERVSHwhdCprSqaSiSKNRCCZFInwkVyDCKUaw6E2EmI5GoSKKpTzWqsApELw02oDR4GOhN8PDKyaTIMiZDzfBBgSsmBGWRRHTsyzL4Bc-5dJXITUOMPn-voWy4x5F73HKPv5ThcPLO47gOx6-z91GUk4mmhHaj1uRmrBqkkXEejvwyVApJc6e4OccjjsaIImMkHxWSfSf__Mmtv03fg7lGt9XkzbP2-TbMU9NV2MYDVaA0fHrWOzArR8P7_GnXbu43uhvx7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB688HiwnljPIL7parPZXI-ihoq1FjzwbekeQUHSYqrov3d2m7RVVBDJ285ms8zsZL9hLoA9Rts1wZQiUrc1wRs_IlEsPKLQ1EgjFkcqtV1LGmGzGd3fx62RLH4b7V66JPs5DaZKU9Y76qr0aCTxjRq3PWUEITgLCKLISWYC6Y29fn038CP4sa3ubWAN8bzQL9Jmvl_j09U0_mACI0dQ5xdHqb1_ksr_d74A8wX2dI77h2URxnS2BJUChzqFluc4VLZ6KMeWYKZMYEby3OWg1Gu-DIetztO7IeHKiW3eU2R2OleoJU5d25T3duYkJlYuX4Hb5OzmpE6KJgxEouXcIyqg2heuEDKmNU19EQW-FkqISLpMKE_6QYji1qnwUxmISAUSIUCsUbWVJ9qxtwoTWSfTa-CgKcqkSFMmfc3wwYOgmBCUBRJRsyur4Jb857KoUG4aZTzxYW1lwz2O3OOWe_ytCvuDd7r9-hy_zt5FsQ4mmtLa9eMGN2M1Lw6MU_HVrcJmKXVeKHTO8ddHQ0SXIZIPSikPyT9_cv1v03dgunWa8MZ582IDZqlpNmzDhDZhovf8ordgSr72HvPnbXvOPwAFWvrR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+Factorization+Over+Henselian+Fields&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Alberich-Carrami%C3%B1ana%2C+Maria&rft.au=Gu%C3%A0rdia%2C+Jordi&rft.au=Nart%2C+Enric&rft.au=Poteaux%2C+Adrien&rft.date=2025-04-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=25&rft.issue=2&rft.spage=631&rft.epage=681&rft_id=info:doi/10.1007%2Fs10208-024-09646-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_024_09646_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |