Polynomial Factorization Over Henselian Fields

We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of computational mathematics Ročník 25; číslo 2; s. 631 - 681
Hlavní autoři: Alberich-Carramiñana, Maria, Guàrdia, Jordi, Nart, Enric, Poteaux, Adrien, Roé, Joaquim, Weimann, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2025
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1615-3375, 1615-3383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an algorithm that, given an irreducible polynomial g over a general valued field ( K ,  v ), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10 ), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-024-09646-x