Intuitionistic Fuzzy C-Means Algorithm Based on Membership Information Transfer-Ring and Similarity Measurement

The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tum...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 21; číslo 3; s. 696
Hlavní autoři: Chen, Haipeng, Xie, Zeyu, Huang, Yongping, Gai, Di
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 20.01.2021
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.
AbstractList The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.
The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.
Author Huang, Yongping
Gai, Di
Chen, Haipeng
Xie, Zeyu
AuthorAffiliation 2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
1 College of Computer Science and Technology, Jilin University, Changchun 130012, China; chenhp@jlu.edu.cn (H.C.); xiezy18@mails.jlu.edu.cn (Z.X.); gaidi18@mails.jlu.edu.cn (D.G.)
AuthorAffiliation_xml – name: 2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
– name: 1 College of Computer Science and Technology, Jilin University, Changchun 130012, China; chenhp@jlu.edu.cn (H.C.); xiezy18@mails.jlu.edu.cn (Z.X.); gaidi18@mails.jlu.edu.cn (D.G.)
Author_xml – sequence: 1
  givenname: Haipeng
  surname: Chen
  fullname: Chen, Haipeng
– sequence: 2
  givenname: Zeyu
  surname: Xie
  fullname: Xie, Zeyu
– sequence: 3
  givenname: Yongping
  surname: Huang
  fullname: Huang, Yongping
– sequence: 4
  givenname: Di
  surname: Gai
  fullname: Gai, Di
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33498422$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAUhU1JaR7ton-gGLppF270sixtCsnQtAMJgSZZC1m6ntFgS1PJLkx-fTWZdEhCVhK63znco3uPiwMfPBTFR4y-USrRaSIYUcQlf1McYUZYJQhBB0_uh8VxSiuECKVUvCsOKWVSMEKOijD34-RGF7xLozPlxXR_vyln1RVon8qzfhGiG5dDea4T2DL48gqGFmJaunU5912Ig96Ky9uY-Q5i9dv5Ram9LW_c4Hqd1Zus0WmKMIAf3xdvO90n-PB4nhR3Fz9uZ7-qy-uf89nZZWUYl2OlZcs5aaywxCKBQGLbUasJyyllK0mjsawb1naAOqwNa43lqMacWGigBkpPivnO1wa9UuvoBh03KminHh5CXCgdc-AeFDUSYyEbjKVhqLOCYmEt5hbrGpraZK_vO6_11A5gTY4Rdf_M9HnFu6VahL-qEZxhgbPBl0eDGP5MkEY1uGSg77WHMCVFmMC85phv-_78Al2FKfr8VVsKYc4bRjL16WlH-1b-zzUDX3eAiSGlCN0ewUhtd0btdyazpy9Y48aHqeYwrn9F8Q-IjsM9
CitedBy_id crossref_primary_10_1109_JSEN_2021_3106152
crossref_primary_10_1155_2022_3315121
crossref_primary_10_1016_j_asoc_2024_112603
crossref_primary_10_3390_s21217171
crossref_primary_10_1049_ipr2_12939
crossref_primary_10_1007_s42235_021_0049_4
crossref_primary_10_3390_s22166163
crossref_primary_10_1155_2022_8465713
crossref_primary_10_3390_math11020285
crossref_primary_10_1155_2022_8624617
crossref_primary_10_1109_TSMC_2024_3418411
crossref_primary_10_3389_fncom_2024_1425008
Cites_doi 10.3390/s20082391
10.1016/j.asoc.2018.01.003
10.3969/j.issn.1004-4132.2010.04.009
10.1016/0098-3004(84)90020-7
10.1109/TNN.2002.804229
10.1007/s12575-009-9013-0
10.3390/s20133722
10.1016/j.sigpro.2018.02.025
10.1109/CCPR.2010.5659249
10.3390/s19153285
10.1109/TSMCB.2004.831165
10.1016/j.patrec.2008.04.016
10.1109/TFUZZ.2018.2796074
10.1016/S0019-9958(65)90241-X
10.1109/TBME.2015.2462750
10.1016/j.neuroimage.2016.10.027
10.1016/S0165-0114(86)80034-3
10.1016/j.media.2005.05.007
10.1016/j.nicl.2018.03.026
10.1016/j.eswa.2014.09.020
10.1109/34.295913
10.1016/j.dsp.2018.08.022
10.1016/j.neucom.2017.08.051
10.1109/JBHI.2018.2884208
10.1002/hbm.20935
10.1109/TCYB.2019.2921779
10.1002/jmri.24517
10.1109/TMI.2014.2322280
10.1016/j.asoc.2015.12.022
10.1016/j.artmed.2004.01.012
10.1016/j.procs.2015.06.090
10.1016/j.eswa.2018.10.040
10.1109/TFUZZ.2018.2889018
10.1023/B:NEPL.0000011135.19145.1b
10.1016/j.asoc.2015.05.038
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21030696
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3c911897119c40fd8318dd16d1a5e75c
PMC7864181
33498422
10_3390_s21030696
Genre Journal Article
GrantInformation_xml – fundername: Regional Joint Fund of NSFC
  grantid: U19A2057
– fundername: the National Natural Science Foundation of China
  grantid: 61672259 and 61876070
– fundername: the National Key Research and Development Program of China
  grantid: 2018YFB0804202 and 2018YFB0804203
– fundername: the Jilin Province Science and Technology Development Plan Project
  grantid: 20190303134SF and 20180201064SF
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-a9b6627d8d2d080e91df3da240699b927a19574bfe0f1ac4bcd605162de7e5e33
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:49:22 EDT 2025
Tue Nov 04 02:03:26 EST 2025
Sun Nov 09 13:07:36 EST 2025
Tue Oct 07 07:00:05 EDT 2025
Wed Feb 19 02:04:16 EST 2025
Tue Nov 18 20:52:04 EST 2025
Sat Nov 29 07:14:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords fuzzy C-means algorithm
image segmentation
information transferring
similarity
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a9b6627d8d2d080e91df3da240699b927a19574bfe0f1ac4bcd605162de7e5e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/3c911897119c40fd8318dd16d1a5e75c
PMID 33498422
PQID 2480166742
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3c911897119c40fd8318dd16d1a5e75c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864181
proquest_miscellaneous_2481656163
proquest_journals_2480166742
pubmed_primary_33498422
crossref_primary_10_3390_s21030696
crossref_citationtrail_10_3390_s21030696
PublicationCentury 2000
PublicationDate 20210120
PublicationDateYYYYMMDD 2021-01-20
PublicationDate_xml – month: 1
  year: 2021
  text: 20210120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bezdek (ref_23) 1984; 10
Javed (ref_15) 2016; 63
(ref_36) 2018; 275
ref_35
ref_32
Stewart (ref_13) 2002; 13
Rouhi (ref_14) 2015; 42
Xu (ref_24) 2010; 21
Habas (ref_6) 2010; 31
Wang (ref_19) 2019; 50
Li (ref_22) 2018; 83
Valverde (ref_37) 2015; 41
Rehman (ref_1) 2019; 118
Makropoulos (ref_7) 2014; 33
Zadeh (ref_33) 1965; 8
Lei (ref_29) 2018; 27
Adhikari (ref_25) 2015; 34
Dhanachandra (ref_17) 2015; 54
Shenton (ref_3) 2018; 18
ref_21
ref_20
Robert (ref_2) 2018; 170
Zhang (ref_8) 2003; 18
Bai (ref_27) 2019; 23
Zhang (ref_9) 2004; 32
Yang (ref_11) 2008; 29
Liu (ref_26) 2018; 12
Bai (ref_28) 2016; 46
Guenette (ref_4) 2018; 149
Prastawa (ref_5) 2005; 9
Chen (ref_10) 2004; 34
Verma (ref_31) 2016; 46
Atanassov (ref_34) 1986; 20
Adam (ref_12) 1994; 16
Avazpour (ref_16) 2009; 11
Pham (ref_18) 2018; 65
Lei (ref_30) 2018; 26
References_xml – ident: ref_21
  doi: 10.3390/s20082391
– volume: 65
  start-page: 230
  year: 2018
  ident: ref_18
  article-title: Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.003
– volume: 21
  start-page: 580
  year: 2010
  ident: ref_24
  article-title: Intuitionistic fuzzy C-means clustering algorithms
  publication-title: J. Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– volume: 10
  start-page: 191
  year: 1984
  ident: ref_23
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 13
  start-page: 1557
  year: 2002
  ident: ref_13
  article-title: Region growing with pulse-coupled neural networks: An alternative to seeded region growing
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804229
– volume: 11
  start-page: 241
  year: 2009
  ident: ref_16
  article-title: Segmentation of Extrapulmonary Tuberculosis Infection Using Modified Automatic Seeded Region Growing
  publication-title: Biol. Proced. Online
  doi: 10.1007/s12575-009-9013-0
– ident: ref_32
  doi: 10.3390/s20133722
– volume: 149
  start-page: 27
  year: 2018
  ident: ref_4
  article-title: Active contours driven by edge entropy fitting energy for image segmentation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.02.025
– ident: ref_35
  doi: 10.1109/CCPR.2010.5659249
– ident: ref_20
  doi: 10.3390/s19153285
– volume: 34
  start-page: 1907
  year: 2004
  ident: ref_10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2004.831165
– volume: 29
  start-page: 1713
  year: 2008
  ident: ref_11
  article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.04.016
– volume: 26
  start-page: 3027
  year: 2018
  ident: ref_30
  article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2796074
– volume: 8
  start-page: 338
  year: 1965
  ident: ref_33
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 63
  start-page: 431
  year: 2016
  ident: ref_15
  article-title: Dynamic 3-D MR visualization and detection of upper airway obstruction during sleep using region-growing segmentation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2462750
– volume: 170
  start-page: 132
  year: 2018
  ident: ref_2
  article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.027
– volume: 20
  start-page: 87
  year: 1986
  ident: ref_34
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– volume: 9
  start-page: 457
  year: 2005
  ident: ref_5
  article-title: Automatic segmentation of MR images of the developing newborn brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.05.007
– volume: 18
  start-page: 888
  year: 2018
  ident: ref_3
  article-title: Automated versus manual segmentation of brain region volumes in former football players
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.03.026
– volume: 42
  start-page: 990
  year: 2015
  ident: ref_14
  article-title: Benign and malignant breast tumors classification based on region growing and CNN segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.020
– volume: 46
  start-page: 3259
  year: 2016
  ident: ref_28
  article-title: Infrared Ship Target Segmentation Based on Spatial Information Improved FCM
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
– volume: 16
  start-page: 641
  year: 1994
  ident: ref_12
  article-title: Seeded region growing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.295913
– volume: 83
  start-page: 235
  year: 2018
  ident: ref_22
  article-title: Integrating guided filter into fuzzy clustering for noisy image segmentation
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.08.022
– volume: 275
  start-page: 546
  year: 2018
  ident: ref_36
  article-title: A clustering fusion technique for MR brain tissue segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.051
– volume: 23
  start-page: 2039
  year: 2019
  ident: ref_27
  article-title: Intuitionistic Center-Free FCM Clustering for MR Brain Image Segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2884208
– volume: 31
  start-page: 1348
  year: 2010
  ident: ref_6
  article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20935
– volume: 50
  start-page: 3938
  year: 2019
  ident: ref_19
  article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2921779
– volume: 41
  start-page: 93
  year: 2015
  ident: ref_37
  article-title: Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24517
– volume: 33
  start-page: 1818
  year: 2014
  ident: ref_7
  article-title: Automatic whole brain MRI segmentation of the developing neonatal brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2322280
– volume: 46
  start-page: 543
  year: 2016
  ident: ref_31
  article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.022
– volume: 32
  start-page: 37
  year: 2004
  ident: ref_9
  article-title: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.01.012
– volume: 54
  start-page: 764
  year: 2015
  ident: ref_17
  article-title: Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.090
– volume: 118
  start-page: 598
  year: 2019
  ident: ref_1
  article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.040
– volume: 12
  start-page: 4336
  year: 2018
  ident: ref_26
  article-title: Gamma correction FCM algorithm with conditional spatial information for image segmentation
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 27
  start-page: 1753
  year: 2018
  ident: ref_29
  article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2889018
– volume: 18
  start-page: 155
  year: 2003
  ident: ref_8
  article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm
  publication-title: Neural Process. Lett.
  doi: 10.1023/B:NEPL.0000011135.19145.1b
– volume: 34
  start-page: 758
  year: 2015
  ident: ref_25
  article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.038
SSID ssj0023338
Score 2.4070086
Snippet The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 696
SubjectTerms Accuracy
Algorithms
Brain cancer
Brain research
Clustering
fuzzy C-means algorithm
Fuzzy sets
image segmentation
information transferring
Neighborhoods
Noise
similarity
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMceD8CBRnEgUvU-LF2fELdqiuQ6KoqIPUWObbTrtQmZR9I9Ncz9nrDLqq4cI3H1khjz8znjL8BeG9Vw4VpEKmGYj8hZZEbJn1uBcIRpSxmvZFd_4uaTMrTU32cLtzmqaxy7ROjo3adDXfkeyzwnEiJSO7j1Y88dI0Kf1dTC43bsBOYysQAdkaHk-OTHnJxRGArPiGO4H5vzkJXLRkY-jeiUCTrvynD_LtQciPyjB_8r84P4X7KOcn-apM8glu-fQz3NpgIn0D3GWNPrN6KxM1kvLy-_kUO8iOPoYzsX5zhsovzSzLCoOdI15IjHzqJhFIvkl40hckkhr7Gz_ITXJaY1pGv08spomdM9nFOfx_5FL6PD78dfMpTLwa0mtSL3Og6UMW70jGHSabX1DXcmfhwVteaKUP1UIm68UVDjRW1dQiUqGTOKz_0nD-DQdu1_gUQVtfoZQ0GicIL5rQpnDO0xkRI1ryhZQYf1rapbCIqD_0yLioELMGMVW_GDN71olcrdo6bhEbBwL1AINSOH7rZWZXOZ8Utev1SK9xFVhSNK9HXOUelo2bo1dBmsLs2cZVO-bz6Y98M3vbDeD7DTxfT-m4ZZQLBEaa9GTxf7aZeE86FLgXD2Wprn22puj3STs8jB7gqpcDk7OW_1XoFd1mowSkoesNdGCxmS_8a7tifi-l89iYdlt8ZuyE7
  priority: 102
  providerName: ProQuest
Title Intuitionistic Fuzzy C-Means Algorithm Based on Membership Information Transfer-Ring and Similarity Measurement
URI https://www.ncbi.nlm.nih.gov/pubmed/33498422
https://www.proquest.com/docview/2480166742
https://www.proquest.com/docview/2481656163
https://pubmed.ncbi.nlm.nih.gov/PMC7864181
https://doaj.org/article/3c911897119c40fd8318dd16d1a5e75c
Volume 21
WOSCitedRecordID wos000615489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeFpTKIA5do40ft-LhdtWIlWlULSOUUObazW2k3QX2stHvgtzN20qhFK3Hh4oMfkTMee-ZLxt8AfLKq5MKUiFRDsJ-QMk0Mkz6xAuGIUha93siu_1VNp9l8rmc7qb5CTFhDD9wI7ohb3I6ZVpRqK9LSZaiEzlHpqBl4NbDh9EWvZwumWqjFEXk1PEIcQf3RioVsWjIw8-9Yn0jSf5dn-XeA5I7FGT-FJ62rSI6bKT6De756Do93CARfQH2KJiMGXUW-ZTLe3N7ekJNk4tECkePL8xqx_8UVGaKtcqSuyMSHBCAhQou0F5HCYBItVumXyRk-lpjKkW-LqwWCXvTRcUz3GfEl_BiPvp98SdoUCihsqdeJ0UVgeHeZYw6l5DV1JXcm3nfVhWbKUD1Qoih9WlJjRWEd4hsqmfPKDzznr-Cgqiv_BggrCjwcDZ7tqRfMaZM6Z2iB_osseEmzHnzeija3Lb94SHNxmSPOCKuQd6vQg49d118NqcZdnYZhfboOgQc7VqB25K125P_Sjh4cblc3bzfnKmeBMkdKJVgPPnTNuK3CvxJT-XoT-wReIvRWe_C6UYZuJpwLnQmGo9WemuxNdb-lWlxE6m6VSYE-1dv_8W7v4BELATYpxaPuEA7Wy41_Dw_t9XqxWvbhvpqrWGZ9eDAcTWdn_bhHsJz8HmHd7HQy-_kHDgsXhw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOiTggfslMMAgkHiJFjuuHT8gtA2qVWurCoY0noJjO1ulLhm9gLYfxW_kOE1Diybe9sBrYid28uV85zjH3wF4bWQec51jpOqT_bgQUaiZcKHhGI5IadDrrdT1e3IwSI6O1HADfi33wvi0yqVNrAy1LY1fI99mXudECIzk3p99D33VKP93dVlCYwGLA3f-E0O26bvuB3y_bxjrfDzc2w_rqgJ4f6FmoVaZFz23iWUW3SWnqM1jq6stoCpTTGqq2pJnuYtyqg3PjEWXnwpmnXRt5xdA0eRvcgR70oLNYbc__NqEeDFGfAv9ojhW0faU-SpewlcEWGG9qjjAZR7t34mZK0zXuf2_PaM7cKv2qcnO4iO4CxuuuAc3V5QW70PZRW6tstMqYWrSmV9cnJO9sO-QqsnO-BinMTs5JbtI6paUBek7XynFp7KReseW70wqas_dJPyElyW6sOTz6HQ01r4EIPZp1lsfwJcrmfFDaBVl4R4DYVmGLKKRBCPHmVU6slbTDB09kcU5TQJ4u8RCamohdl8PZJxiQOZhkzawCeBV0_RsoT5yWaNdD6imgRcMrw6Uk-O0tj9pbJDVEiUpVYZHuU3QlltLhaW67WTbBLC1hFRaW7Fp-gdPAbxsTqP98T-VdOHKedXGCzihWx_AowV6m5HEMVcJZ9hbruF6bajrZ4rRSaVxLhPB0fl88u9hvYDr-4f9XtrrDg6ewg3m840iipZ_C1qzydw9g2vmx2w0nTyvP1QC364a978BmZx-uA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFiE4lDcNFDAIJC7Rxo7Xjg8I9cGKVburFQ-pPQXHdtqVtknZB6j9afw6ZrLZsIsqbj1wTezIST7PN2OPvyHktVV5LEwOkSom-wkpo9Bw6UMrIBxRyoLXW6nrH6p-Pzk60oM18mtxFgbTKhc2sTLUrrS4Rt7iqHMiJURyrbxOixjsd96ffw-xghTutC7KacwhcuAvfkL4NnnX3Yd__Ybzzocvex_DusIAjEXqaWh0hgLoLnHcgevkNXN57Ex1HFRnmivDdFuJLPdRzowVmXXg_jPJnVe-7XExFMz_BrjkAubYxqDbGxw34V4M0d9cyyiOddSacKzoJbE6wBIDVoUCrvJu_07SXGK9zp3_-XvdJZu1r0135pPjHlnzxX1ye0mB8QEpu8C5VdZaJVhNO7PLywu6F_Y8UDjdGZ3Aa0xPz-gukL2jZUF7HiuoYIobrU9yYWdaUX7ux-EneCw1haOfh2fDkcHSgNCnWYd9SL5eyxs_IutFWfgtQnmWAbsYIMfIC-60iZwzLAMHUGZxzpKAvF3gIrW1QDvWCRmlEKghhNIGQgF51TQ9n6uSXNVoF8HVNEAh8epCOT5Ja7uUxhbYLtGKMW1FlLsEbLxzTDpm2l61bUC2F_BKa-s2Sf9gKyAvm9tgl3CzyRS-nFVtUNgJ3P2APJ4juRlJHAudCA691QrGV4a6eqcYnlba5yqRApzSJ_8e1gtyE8CeHnb7B0_JLY5pSBEDQtgm69PxzD8jN-yP6XAyfl7PWUq-XTfsfwO_XId4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitionistic+Fuzzy+C-Means+Algorithm+Based+on+Membership+Information+Transfer-Ring+and+Similarity+Measurement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Haipeng&rft.au=Xie%2C+Zeyu&rft.au=Huang%2C+Yongping&rft.au=Gai%2C+Di&rft.date=2021-01-20&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=3&rft_id=info:doi/10.3390%2Fs21030696&rft_id=info%3Apmid%2F33498422&rft.externalDocID=PMC7864181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon