Intuitionistic Fuzzy C-Means Algorithm Based on Membership Information Transfer-Ring and Similarity Measurement
The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tum...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 21; číslo 3; s. 696 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
20.01.2021
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy. |
|---|---|
| AbstractList | The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy. The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy.The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity. To address this issue, the membership information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses simple distance measurements to calculate the membership degree, which causes an unsatisfactory result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership calculation, in which gray information and distance information are fused adaptively. In addition, the complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation accuracy. |
| Author | Huang, Yongping Gai, Di Chen, Haipeng Xie, Zeyu |
| AuthorAffiliation | 2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China 1 College of Computer Science and Technology, Jilin University, Changchun 130012, China; chenhp@jlu.edu.cn (H.C.); xiezy18@mails.jlu.edu.cn (Z.X.); gaidi18@mails.jlu.edu.cn (D.G.) |
| AuthorAffiliation_xml | – name: 2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China – name: 1 College of Computer Science and Technology, Jilin University, Changchun 130012, China; chenhp@jlu.edu.cn (H.C.); xiezy18@mails.jlu.edu.cn (Z.X.); gaidi18@mails.jlu.edu.cn (D.G.) |
| Author_xml | – sequence: 1 givenname: Haipeng surname: Chen fullname: Chen, Haipeng – sequence: 2 givenname: Zeyu surname: Xie fullname: Xie, Zeyu – sequence: 3 givenname: Yongping surname: Huang fullname: Huang, Yongping – sequence: 4 givenname: Di surname: Gai fullname: Gai, Di |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33498422$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktr3DAUhU1JaR7ton-gGLppF270sixtCsnQtAMJgSZZC1m6ntFgS1PJLkx-fTWZdEhCVhK63znco3uPiwMfPBTFR4y-USrRaSIYUcQlf1McYUZYJQhBB0_uh8VxSiuECKVUvCsOKWVSMEKOijD34-RGF7xLozPlxXR_vyln1RVon8qzfhGiG5dDea4T2DL48gqGFmJaunU5912Ig96Ky9uY-Q5i9dv5Ram9LW_c4Hqd1Zus0WmKMIAf3xdvO90n-PB4nhR3Fz9uZ7-qy-uf89nZZWUYl2OlZcs5aaywxCKBQGLbUasJyyllK0mjsawb1naAOqwNa43lqMacWGigBkpPivnO1wa9UuvoBh03KminHh5CXCgdc-AeFDUSYyEbjKVhqLOCYmEt5hbrGpraZK_vO6_11A5gTY4Rdf_M9HnFu6VahL-qEZxhgbPBl0eDGP5MkEY1uGSg77WHMCVFmMC85phv-_78Al2FKfr8VVsKYc4bRjL16WlH-1b-zzUDX3eAiSGlCN0ewUhtd0btdyazpy9Y48aHqeYwrn9F8Q-IjsM9 |
| CitedBy_id | crossref_primary_10_1109_JSEN_2021_3106152 crossref_primary_10_1155_2022_3315121 crossref_primary_10_1016_j_asoc_2024_112603 crossref_primary_10_3390_s21217171 crossref_primary_10_1049_ipr2_12939 crossref_primary_10_1007_s42235_021_0049_4 crossref_primary_10_3390_s22166163 crossref_primary_10_1155_2022_8465713 crossref_primary_10_3390_math11020285 crossref_primary_10_1155_2022_8624617 crossref_primary_10_1109_TSMC_2024_3418411 crossref_primary_10_3389_fncom_2024_1425008 |
| Cites_doi | 10.3390/s20082391 10.1016/j.asoc.2018.01.003 10.3969/j.issn.1004-4132.2010.04.009 10.1016/0098-3004(84)90020-7 10.1109/TNN.2002.804229 10.1007/s12575-009-9013-0 10.3390/s20133722 10.1016/j.sigpro.2018.02.025 10.1109/CCPR.2010.5659249 10.3390/s19153285 10.1109/TSMCB.2004.831165 10.1016/j.patrec.2008.04.016 10.1109/TFUZZ.2018.2796074 10.1016/S0019-9958(65)90241-X 10.1109/TBME.2015.2462750 10.1016/j.neuroimage.2016.10.027 10.1016/S0165-0114(86)80034-3 10.1016/j.media.2005.05.007 10.1016/j.nicl.2018.03.026 10.1016/j.eswa.2014.09.020 10.1109/34.295913 10.1016/j.dsp.2018.08.022 10.1016/j.neucom.2017.08.051 10.1109/JBHI.2018.2884208 10.1002/hbm.20935 10.1109/TCYB.2019.2921779 10.1002/jmri.24517 10.1109/TMI.2014.2322280 10.1016/j.asoc.2015.12.022 10.1016/j.artmed.2004.01.012 10.1016/j.procs.2015.06.090 10.1016/j.eswa.2018.10.040 10.1109/TFUZZ.2018.2889018 10.1023/B:NEPL.0000011135.19145.1b 10.1016/j.asoc.2015.05.038 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21030696 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_3c911897119c40fd8318dd16d1a5e75c PMC7864181 33498422 10_3390_s21030696 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Regional Joint Fund of NSFC grantid: U19A2057 – fundername: the National Natural Science Foundation of China grantid: 61672259 and 61876070 – fundername: the National Key Research and Development Program of China grantid: 2018YFB0804202 and 2018YFB0804203 – fundername: the Jilin Province Science and Technology Development Plan Project grantid: 20190303134SF and 20180201064SF |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-a9b6627d8d2d080e91df3da240699b927a19574bfe0f1ac4bcd605162de7e5e33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:49:22 EDT 2025 Tue Nov 04 02:03:26 EST 2025 Sun Nov 09 13:07:36 EST 2025 Tue Oct 07 07:00:05 EDT 2025 Wed Feb 19 02:04:16 EST 2025 Tue Nov 18 20:52:04 EST 2025 Sat Nov 29 07:14:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | fuzzy C-means algorithm image segmentation information transferring similarity |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-a9b6627d8d2d080e91df3da240699b927a19574bfe0f1ac4bcd605162de7e5e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/3c911897119c40fd8318dd16d1a5e75c |
| PMID | 33498422 |
| PQID | 2480166742 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3c911897119c40fd8318dd16d1a5e75c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864181 proquest_miscellaneous_2481656163 proquest_journals_2480166742 pubmed_primary_33498422 crossref_primary_10_3390_s21030696 crossref_citationtrail_10_3390_s21030696 |
| PublicationCentury | 2000 |
| PublicationDate | 20210120 |
| PublicationDateYYYYMMDD | 2021-01-20 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210120 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Bezdek (ref_23) 1984; 10 Javed (ref_15) 2016; 63 (ref_36) 2018; 275 ref_35 ref_32 Stewart (ref_13) 2002; 13 Rouhi (ref_14) 2015; 42 Xu (ref_24) 2010; 21 Habas (ref_6) 2010; 31 Wang (ref_19) 2019; 50 Li (ref_22) 2018; 83 Valverde (ref_37) 2015; 41 Rehman (ref_1) 2019; 118 Makropoulos (ref_7) 2014; 33 Zadeh (ref_33) 1965; 8 Lei (ref_29) 2018; 27 Adhikari (ref_25) 2015; 34 Dhanachandra (ref_17) 2015; 54 Shenton (ref_3) 2018; 18 ref_21 ref_20 Robert (ref_2) 2018; 170 Zhang (ref_8) 2003; 18 Bai (ref_27) 2019; 23 Zhang (ref_9) 2004; 32 Yang (ref_11) 2008; 29 Liu (ref_26) 2018; 12 Bai (ref_28) 2016; 46 Guenette (ref_4) 2018; 149 Prastawa (ref_5) 2005; 9 Chen (ref_10) 2004; 34 Verma (ref_31) 2016; 46 Atanassov (ref_34) 1986; 20 Adam (ref_12) 1994; 16 Avazpour (ref_16) 2009; 11 Pham (ref_18) 2018; 65 Lei (ref_30) 2018; 26 |
| References_xml | – ident: ref_21 doi: 10.3390/s20082391 – volume: 65 start-page: 230 year: 2018 ident: ref_18 article-title: Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.003 – volume: 21 start-page: 580 year: 2010 ident: ref_24 article-title: Intuitionistic fuzzy C-means clustering algorithms publication-title: J. Syst. Eng. Electron. doi: 10.3969/j.issn.1004-4132.2010.04.009 – volume: 10 start-page: 191 year: 1984 ident: ref_23 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 13 start-page: 1557 year: 2002 ident: ref_13 article-title: Region growing with pulse-coupled neural networks: An alternative to seeded region growing publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.804229 – volume: 11 start-page: 241 year: 2009 ident: ref_16 article-title: Segmentation of Extrapulmonary Tuberculosis Infection Using Modified Automatic Seeded Region Growing publication-title: Biol. Proced. Online doi: 10.1007/s12575-009-9013-0 – ident: ref_32 doi: 10.3390/s20133722 – volume: 149 start-page: 27 year: 2018 ident: ref_4 article-title: Active contours driven by edge entropy fitting energy for image segmentation publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.02.025 – ident: ref_35 doi: 10.1109/CCPR.2010.5659249 – ident: ref_20 doi: 10.3390/s19153285 – volume: 34 start-page: 1907 year: 2004 ident: ref_10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2004.831165 – volume: 29 start-page: 1713 year: 2008 ident: ref_11 article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.04.016 – volume: 26 start-page: 3027 year: 2018 ident: ref_30 article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796074 – volume: 8 start-page: 338 year: 1965 ident: ref_33 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 63 start-page: 431 year: 2016 ident: ref_15 article-title: Dynamic 3-D MR visualization and detection of upper airway obstruction during sleep using region-growing segmentation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2462750 – volume: 170 start-page: 132 year: 2018 ident: ref_2 article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.027 – volume: 20 start-page: 87 year: 1986 ident: ref_34 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(86)80034-3 – volume: 9 start-page: 457 year: 2005 ident: ref_5 article-title: Automatic segmentation of MR images of the developing newborn brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.05.007 – volume: 18 start-page: 888 year: 2018 ident: ref_3 article-title: Automated versus manual segmentation of brain region volumes in former football players publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.03.026 – volume: 42 start-page: 990 year: 2015 ident: ref_14 article-title: Benign and malignant breast tumors classification based on region growing and CNN segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.09.020 – volume: 46 start-page: 3259 year: 2016 ident: ref_28 article-title: Infrared Ship Target Segmentation Based on Spatial Information Improved FCM publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. – volume: 16 start-page: 641 year: 1994 ident: ref_12 article-title: Seeded region growing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.295913 – volume: 83 start-page: 235 year: 2018 ident: ref_22 article-title: Integrating guided filter into fuzzy clustering for noisy image segmentation publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.08.022 – volume: 275 start-page: 546 year: 2018 ident: ref_36 article-title: A clustering fusion technique for MR brain tissue segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.051 – volume: 23 start-page: 2039 year: 2019 ident: ref_27 article-title: Intuitionistic Center-Free FCM Clustering for MR Brain Image Segmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2884208 – volume: 31 start-page: 1348 year: 2010 ident: ref_6 article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20935 – volume: 50 start-page: 3938 year: 2019 ident: ref_19 article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2921779 – volume: 41 start-page: 93 year: 2015 ident: ref_37 article-title: Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24517 – volume: 33 start-page: 1818 year: 2014 ident: ref_7 article-title: Automatic whole brain MRI segmentation of the developing neonatal brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2322280 – volume: 46 start-page: 543 year: 2016 ident: ref_31 article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.022 – volume: 32 start-page: 37 year: 2004 ident: ref_9 article-title: A novel kernelized fuzzy c-means algorithm with application in medical image segmentation publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.01.012 – volume: 54 start-page: 764 year: 2015 ident: ref_17 article-title: Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.06.090 – volume: 118 start-page: 598 year: 2019 ident: ref_1 article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.10.040 – volume: 12 start-page: 4336 year: 2018 ident: ref_26 article-title: Gamma correction FCM algorithm with conditional spatial information for image segmentation publication-title: KSII Trans. Internet Inf. Syst. – volume: 27 start-page: 1753 year: 2018 ident: ref_29 article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2889018 – volume: 18 start-page: 155 year: 2003 ident: ref_8 article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm publication-title: Neural Process. Lett. doi: 10.1023/B:NEPL.0000011135.19145.1b – volume: 34 start-page: 758 year: 2015 ident: ref_25 article-title: Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.05.038 |
| SSID | ssj0023338 |
| Score | 2.4070086 |
| Snippet | The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 696 |
| SubjectTerms | Accuracy Algorithms Brain cancer Brain research Clustering fuzzy C-means algorithm Fuzzy sets image segmentation information transferring Neighborhoods Noise similarity Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMceD8CBRnEgUvU-LF2fELdqiuQ6KoqIPUWObbTrtQmZR9I9Ncz9nrDLqq4cI3H1khjz8znjL8BeG9Vw4VpEKmGYj8hZZEbJn1uBcIRpSxmvZFd_4uaTMrTU32cLtzmqaxy7ROjo3adDXfkeyzwnEiJSO7j1Y88dI0Kf1dTC43bsBOYysQAdkaHk-OTHnJxRGArPiGO4H5vzkJXLRkY-jeiUCTrvynD_LtQciPyjB_8r84P4X7KOcn-apM8glu-fQz3NpgIn0D3GWNPrN6KxM1kvLy-_kUO8iOPoYzsX5zhsovzSzLCoOdI15IjHzqJhFIvkl40hckkhr7Gz_ITXJaY1pGv08spomdM9nFOfx_5FL6PD78dfMpTLwa0mtSL3Og6UMW70jGHSabX1DXcmfhwVteaKUP1UIm68UVDjRW1dQiUqGTOKz_0nD-DQdu1_gUQVtfoZQ0GicIL5rQpnDO0xkRI1ryhZQYf1rapbCIqD_0yLioELMGMVW_GDN71olcrdo6bhEbBwL1AINSOH7rZWZXOZ8Utev1SK9xFVhSNK9HXOUelo2bo1dBmsLs2cZVO-bz6Y98M3vbDeD7DTxfT-m4ZZQLBEaa9GTxf7aZeE86FLgXD2Wprn22puj3STs8jB7gqpcDk7OW_1XoFd1mowSkoesNdGCxmS_8a7tifi-l89iYdlt8ZuyE7 priority: 102 providerName: ProQuest |
| Title | Intuitionistic Fuzzy C-Means Algorithm Based on Membership Information Transfer-Ring and Similarity Measurement |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33498422 https://www.proquest.com/docview/2480166742 https://www.proquest.com/docview/2481656163 https://pubmed.ncbi.nlm.nih.gov/PMC7864181 https://doaj.org/article/3c911897119c40fd8318dd16d1a5e75c |
| Volume | 21 |
| WOSCitedRecordID | wos000615489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeFpTKIA5do40ft-LhdtWIlWlULSOUUObazW2k3QX2stHvgtzN20qhFK3Hh4oMfkTMee-ZLxt8AfLKq5MKUiFRDsJ-QMk0Mkz6xAuGIUha93siu_1VNp9l8rmc7qb5CTFhDD9wI7ohb3I6ZVpRqK9LSZaiEzlHpqBl4NbDh9EWvZwumWqjFEXk1PEIcQf3RioVsWjIw8-9Yn0jSf5dn-XeA5I7FGT-FJ62rSI6bKT6De756Do93CARfQH2KJiMGXUW-ZTLe3N7ekJNk4tECkePL8xqx_8UVGaKtcqSuyMSHBCAhQou0F5HCYBItVumXyRk-lpjKkW-LqwWCXvTRcUz3GfEl_BiPvp98SdoUCihsqdeJ0UVgeHeZYw6l5DV1JXcm3nfVhWbKUD1Qoih9WlJjRWEd4hsqmfPKDzznr-Cgqiv_BggrCjwcDZ7tqRfMaZM6Z2iB_osseEmzHnzeija3Lb94SHNxmSPOCKuQd6vQg49d118NqcZdnYZhfboOgQc7VqB25K125P_Sjh4cblc3bzfnKmeBMkdKJVgPPnTNuK3CvxJT-XoT-wReIvRWe_C6UYZuJpwLnQmGo9WemuxNdb-lWlxE6m6VSYE-1dv_8W7v4BELATYpxaPuEA7Wy41_Dw_t9XqxWvbhvpqrWGZ9eDAcTWdn_bhHsJz8HmHd7HQy-_kHDgsXhw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOiTggfslMMAgkHiJFjuuHT8gtA2qVWurCoY0noJjO1ulLhm9gLYfxW_kOE1Diybe9sBrYid28uV85zjH3wF4bWQec51jpOqT_bgQUaiZcKHhGI5IadDrrdT1e3IwSI6O1HADfi33wvi0yqVNrAy1LY1fI99mXudECIzk3p99D33VKP93dVlCYwGLA3f-E0O26bvuB3y_bxjrfDzc2w_rqgJ4f6FmoVaZFz23iWUW3SWnqM1jq6stoCpTTGqq2pJnuYtyqg3PjEWXnwpmnXRt5xdA0eRvcgR70oLNYbc__NqEeDFGfAv9ojhW0faU-SpewlcEWGG9qjjAZR7t34mZK0zXuf2_PaM7cKv2qcnO4iO4CxuuuAc3V5QW70PZRW6tstMqYWrSmV9cnJO9sO-QqsnO-BinMTs5JbtI6paUBek7XynFp7KReseW70wqas_dJPyElyW6sOTz6HQ01r4EIPZp1lsfwJcrmfFDaBVl4R4DYVmGLKKRBCPHmVU6slbTDB09kcU5TQJ4u8RCamohdl8PZJxiQOZhkzawCeBV0_RsoT5yWaNdD6imgRcMrw6Uk-O0tj9pbJDVEiUpVYZHuU3QlltLhaW67WTbBLC1hFRaW7Fp-gdPAbxsTqP98T-VdOHKedXGCzihWx_AowV6m5HEMVcJZ9hbruF6bajrZ4rRSaVxLhPB0fl88u9hvYDr-4f9XtrrDg6ewg3m840iipZ_C1qzydw9g2vmx2w0nTyvP1QC364a978BmZx-uA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFiE4lDcNFDAIJC7Rxo7Xjg8I9cGKVburFQ-pPQXHdtqVtknZB6j9afw6ZrLZsIsqbj1wTezIST7PN2OPvyHktVV5LEwOkSom-wkpo9Bw6UMrIBxRyoLXW6nrH6p-Pzk60oM18mtxFgbTKhc2sTLUrrS4Rt7iqHMiJURyrbxOixjsd96ffw-xghTutC7KacwhcuAvfkL4NnnX3Yd__Ybzzocvex_DusIAjEXqaWh0hgLoLnHcgevkNXN57Ex1HFRnmivDdFuJLPdRzowVmXXg_jPJnVe-7XExFMz_BrjkAubYxqDbGxw34V4M0d9cyyiOddSacKzoJbE6wBIDVoUCrvJu_07SXGK9zp3_-XvdJZu1r0135pPjHlnzxX1ye0mB8QEpu8C5VdZaJVhNO7PLywu6F_Y8UDjdGZ3Aa0xPz-gukL2jZUF7HiuoYIobrU9yYWdaUX7ux-EneCw1haOfh2fDkcHSgNCnWYd9SL5eyxs_IutFWfgtQnmWAbsYIMfIC-60iZwzLAMHUGZxzpKAvF3gIrW1QDvWCRmlEKghhNIGQgF51TQ9n6uSXNVoF8HVNEAh8epCOT5Ja7uUxhbYLtGKMW1FlLsEbLxzTDpm2l61bUC2F_BKa-s2Sf9gKyAvm9tgl3CzyRS-nFVtUNgJ3P2APJ4juRlJHAudCA691QrGV4a6eqcYnlba5yqRApzSJ_8e1gtyE8CeHnb7B0_JLY5pSBEDQtgm69PxzD8jN-yP6XAyfl7PWUq-XTfsfwO_XId4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitionistic+Fuzzy+C-Means+Algorithm+Based+on+Membership+Information+Transfer-Ring+and+Similarity+Measurement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Haipeng&rft.au=Xie%2C+Zeyu&rft.au=Huang%2C+Yongping&rft.au=Gai%2C+Di&rft.date=2021-01-20&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=3&rft_id=info:doi/10.3390%2Fs21030696&rft_id=info%3Apmid%2F33498422&rft.externalDocID=PMC7864181 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |