A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms

A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were re...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 18; no. 7; p. 2238
Main Authors: Chen, Xiang, Yuan, Yuan, Cao, Shuai, Zhang, Xu, Chen, Xun
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 11.07.2018
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation.
AbstractList A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation.
A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation.A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation.
Author Cao, Shuai
Yuan, Yuan
Chen, Xun
Zhang, Xu
Chen, Xiang
AuthorAffiliation Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China; yuan1111@mail.ustc.edu.cn (Y.Y.); caoshuai@ustc.edu.cn (S.C.); xuzhang90@ustc.edu.cn (X.Z.); xunchen@ece.ubc.ca (X.C.)
AuthorAffiliation_xml – name: Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China; yuan1111@mail.ustc.edu.cn (Y.Y.); caoshuai@ustc.edu.cn (S.C.); xuzhang90@ustc.edu.cn (X.Z.); xunchen@ece.ubc.ca (X.C.)
Author_xml – sequence: 1
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
– sequence: 2
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
– sequence: 3
  givenname: Shuai
  surname: Cao
  fullname: Cao, Shuai
– sequence: 4
  givenname: Xu
  orcidid: 0000-0002-1533-4340
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 5
  givenname: Xun
  surname: Chen
  fullname: Chen, Xun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29997373$$D View this record in MEDLINE/PubMed
BookMark eNplks1PHCEYh0ljUz_aQ_-BhqSXepjKxwwflybrZteaaDzYngkCs8N2ZtgCU9P-9bKuGrUn4OXhyfsDDsHeGEYHwEeMvlIq0UnCAnFCqHgDDnBN6koQgvaezffBYUprhAilVLwD-0RKySmnB2Azg9eLy7NqGaJxcJGyH3T2YYTLqAd3G-IveKqTs7CUNFzqlOFVzF1YhVH38NrpaDp46UrFwnmYNn1Bb33uCmpyiP7fzjbrV2WRuyG9B29b3Sf34WE8Aj-Xix_z79XF1dn5fHZRmZrJXGkmsUGUE2zbxjpBkZUWa6QZb7BwkkshDWEtdXXJbjitRW0aJB3XreWO0CNwvvPaoNdqE0uu-FcF7dV9IcSV0jF70ztV7pBw3bSNYLJmrKitqWUr2hvbSIR5cX3buTbTzeCscWOOun8hfbkz-k6twh_FEJOUN0Xw5UEQw-_JpawGn4zrez26MCVFEBOSbJMU9PMrdB2mWC67UBiJbXq6pT497-iplceHLcDJDjAxpBRdq4zP929RGvS9wmgbG6mnr1NOHL868Sj9n70DaRbBew
CitedBy_id crossref_primary_10_1109_JSEN_2023_3314104
crossref_primary_10_1186_s12984_020_00786_z
crossref_primary_10_1016_j_bspc_2021_103297
crossref_primary_10_1088_1742_6596_1345_5_052062
crossref_primary_10_1109_TMECH_2021_3074800
crossref_primary_10_3390_s19030555
crossref_primary_10_1109_ACCESS_2020_2980579
crossref_primary_10_1016_j_bspc_2024_106769
crossref_primary_10_1109_TNSRE_2020_3042788
crossref_primary_10_3389_fnins_2020_00450
crossref_primary_10_3233_THC_213545
crossref_primary_10_1088_1361_6579_ac799c
crossref_primary_10_1109_TAES_2023_3329797
Cites_doi 10.1109/TBME.2009.2036444
10.1080/10255842.2015.1070578
10.1371/journal.pone.0109943
10.1016/j.jelekin.2004.06.008
10.1007/BF00204124
10.1016/j.gaitpost.2006.10.012
10.3390/s18020663
10.1152/jn.00222.2005
10.1109/ICORR.2013.6650419
10.1038/44565
10.3390/s18020467
10.1016/j.jelekin.2004.01.004
10.1016/j.jelekin.2011.12.012
10.1088/1741-2552/aa63ba
10.1016/j.clinbiomech.2008.08.003
10.1159/000147199
10.1177/036354659502300421
10.1109/TNSRE.2013.2282898
10.1109/72.761722
10.1109/TBME.2006.889202
10.1109/TCYB.2014.2386856
10.1109/TBME.2006.870246
10.1109/TBME.2006.889190
10.1109/TNSRE.2016.2515087
10.1016/0021-9290(91)90347-P
10.2214/AJR.07.2947
10.1016/j.jelekin.2011.10.012
10.1016/j.humov.2013.03.003
10.1109/10.634654
10.5040/9781718225022
10.1007/s10237-011-0290-6
10.1016/j.jbiomech.2005.08.007
10.1007/978-3-319-19387-8_232
10.1007/s00422-008-0278-1
10.1109/TBME.2011.2170687
10.1159/000147942
10.1016/j.bspc.2016.11.010
10.1186/1475-925X-12-86
10.1109/JBHI.2013.2286455
10.1088/1741-2560/13/6/066001
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18072238
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_33927a5f5869466798dc49f8fbd59017
PMC6069375
29997373
10_3390_s18072238
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-a691c03721df5de830d9d1a0a67518e97989c26f3e4807c73484c509e7afd7e23
IEDL.DBID 7X7
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441334300260&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:30:51 EST 2025
Tue Nov 04 01:57:27 EST 2025
Fri Sep 05 12:56:37 EDT 2025
Tue Oct 07 07:07:06 EDT 2025
Wed Feb 19 02:40:58 EST 2025
Tue Nov 18 22:07:14 EST 2025
Sat Nov 29 07:16:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords factorization algorithms
fast orthogonal search
high-density SEMG
muscle force estimation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a691c03721df5de830d9d1a0a67518e97989c26f3e4807c73484c509e7afd7e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1533-4340
OpenAccessLink https://www.proquest.com/docview/2108751837?pq-origsite=%requestingapplication%
PMID 29997373
PQID 2108751837
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_33927a5f5869466798dc49f8fbd59017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069375
proquest_miscellaneous_2068924807
proquest_journals_2108751837
pubmed_primary_29997373
crossref_citationtrail_10_3390_s18072238
crossref_primary_10_3390_s18072238
PublicationCentury 2000
PublicationDate 2018-07-11
PublicationDateYYYYMMDD 2018-07-11
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lee (ref_37) 1999; 401
Rau (ref_42) 2009; 24
Hayashibe (ref_13) 2013; 12
ref_14
Mengarelli (ref_3) 2017; 33
ref_12
ref_34
Gregor (ref_10) 1991; 24
ref_33
Hyvarinen (ref_36) 1999; 10
Boudaoud (ref_11) 2015; 18
ref_31
Tresch (ref_38) 2006; 95
Staudenmann (ref_23) 2005; 15
Staudenmann (ref_26) 2007; 54
ref_39
Castellini (ref_6) 2009; 100
Nakamura (ref_35) 2004; 14
Clancy (ref_16) 2006; 39
Hasselman (ref_17) 1995; 23
Christophy (ref_2) 2012; 11
Staudenmann (ref_25) 2006; 53
Huang (ref_24) 2017; 14
Daley (ref_7) 2012; 22
Johns (ref_21) 2016; 24
Huang (ref_30) 2016; 13
ref_22
Segal (ref_19) 1991; 142
Korenberg (ref_40) 1989; 60
Li (ref_8) 2014; 18
Mobasser (ref_32) 2007; 54
Na (ref_43) 2016; 46
Agostini (ref_4) 2012; 59
Gyftopoulos (ref_18) 2008; 190
Wolf (ref_20) 1997; 158
ref_29
Muceli (ref_28) 2014; 22
Mountjoy (ref_41) 2010; 57
Vieira (ref_1) 2013; 32
Clancy (ref_15) 1997; 44
ref_9
Hashemi (ref_27) 2012; 22
Patikas (ref_5) 2007; 26
References_xml – volume: 57
  start-page: 790
  year: 2010
  ident: ref_41
  article-title: Use of the fast orthogonal search method to estimate optimal joint angle for upper limb Hill-muscle models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2036444
– volume: 18
  start-page: 1890
  year: 2015
  ident: ref_11
  article-title: On the benefits of using HD-sEMG technique for estimating muscle force
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1070578
– ident: ref_29
  doi: 10.1371/journal.pone.0109943
– volume: 15
  start-page: 1
  year: 2005
  ident: ref_23
  article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: A high density EMG study
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2004.06.008
– volume: 60
  start-page: 267
  year: 1989
  ident: ref_40
  article-title: A robust orthogonal algorithm for system identification and time-series analysis
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204124
– volume: 26
  start-page: 362
  year: 2007
  ident: ref_5
  article-title: Electromyographic patterns in children with cerebral palsy: Do they change after surgery?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.10.012
– ident: ref_14
  doi: 10.3390/s18020663
– ident: ref_34
– volume: 95
  start-page: 2199
  year: 2006
  ident: ref_38
  article-title: Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00222.2005
– ident: ref_31
  doi: 10.1109/ICORR.2013.6650419
– volume: 401
  start-page: 788
  year: 1999
  ident: ref_37
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: ref_9
  doi: 10.3390/s18020467
– volume: 14
  start-page: 423
  year: 2004
  ident: ref_35
  article-title: The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: Part I—Measuring techniques
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2004.01.004
– volume: 22
  start-page: 478
  year: 2012
  ident: ref_7
  article-title: High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.12.012
– volume: 14
  start-page: 046005
  year: 2017
  ident: ref_24
  article-title: An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa63ba
– volume: 24
  start-page: 225
  year: 2009
  ident: ref_42
  article-title: Surface electromyography and muscle force: Limits in sEMG–force relationship and new approaches for applications
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2008.08.003
– volume: 142
  start-page: 261
  year: 1991
  ident: ref_19
  article-title: Anatomical partitioning of three multiarticular human muscles
  publication-title: Cells Tissues Organs
  doi: 10.1159/000147199
– volume: 23
  start-page: 493
  year: 1995
  ident: ref_17
  article-title: An explanation for various rectus femoris strain injuries using previously undescribed muscle architecture
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354659502300421
– volume: 22
  start-page: 623
  year: 2014
  ident: ref_28
  article-title: Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2282898
– volume: 10
  start-page: 626
  year: 1999
  ident: ref_36
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 54
  start-page: 751
  year: 2007
  ident: ref_26
  article-title: Independent component analysis of high-density electromyography in muscle force estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889202
– volume: 46
  start-page: 2
  year: 2016
  ident: ref_43
  article-title: A study on estimation of joint force through isometric index finger abduction with the help of SEMG peaks for biomedical applications
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2386856
– volume: 53
  start-page: 712
  year: 2006
  ident: ref_25
  article-title: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.870246
– volume: 54
  start-page: 683
  year: 2007
  ident: ref_32
  article-title: Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889190
– volume: 24
  start-page: 1041
  year: 2016
  ident: ref_21
  article-title: Force modelling of upper limb biomechanics using ensemble fast orthogonal search on high-density electromyography
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2016.2515087
– volume: 24
  start-page: 287
  year: 1991
  ident: ref_10
  article-title: A comparison of the triceps surae and residual muscle moments at the ankle during cycling
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90347-P
– ident: ref_33
– volume: 190
  start-page: W182
  year: 2008
  ident: ref_18
  article-title: Normal anatomy and strains of the deep musculotendinous junction of the proximal rectus femoris: MRI features
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2947
– volume: 22
  start-page: 469
  year: 2012
  ident: ref_27
  article-title: EMG–force modeling using parallel cascade identification
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.10.012
– ident: ref_12
– volume: 32
  start-page: 753
  year: 2013
  ident: ref_1
  article-title: How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane?
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2013.03.003
– volume: 44
  start-page: 1024
  year: 1997
  ident: ref_15
  article-title: Relating agonist-antagonist electromyograms to joint torque during isometric, quasi-isotonic, nonfatiguing contractions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.634654
– ident: ref_39
  doi: 10.5040/9781718225022
– volume: 11
  start-page: 19
  year: 2012
  ident: ref_2
  article-title: A musculoskeletal model for the lumbar spine
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-011-0290-6
– volume: 39
  start-page: 2690
  year: 2006
  ident: ref_16
  article-title: Influence of advanced electromyogram (EMG) amplitude processors on EMG-to-torque estimation during constant-posture, force-varying contractions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.08.007
– ident: ref_22
  doi: 10.1007/978-3-319-19387-8_232
– volume: 100
  start-page: 35
  year: 2009
  ident: ref_6
  article-title: Surface EMG in advanced hand prosthetics
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-008-0278-1
– volume: 59
  start-page: 219
  year: 2012
  ident: ref_4
  article-title: An algorithm for the estimation of the signal-to-noise ratio in surface myoelectric signals generated during cyclic movements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2170687
– volume: 158
  start-page: 287
  year: 1997
  ident: ref_20
  article-title: Morphological analysis of the human tibialis anterior and medial gastrocnemius muscles
  publication-title: Cells Tissues Organs
  doi: 10.1159/000147942
– volume: 33
  start-page: 1
  year: 2017
  ident: ref_3
  article-title: Co-contraction activity of ankle muscles during walking: A gender comparison
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.11.010
– volume: 12
  start-page: 86
  year: 2013
  ident: ref_13
  article-title: Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-12-86
– volume: 18
  start-page: 1043
  year: 2014
  ident: ref_8
  article-title: sEMG-based joint force control for an upper-limb power-assist exoskeleton robot
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2286455
– volume: 13
  start-page: 066001
  year: 2016
  ident: ref_30
  article-title: Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/6/066001
SSID ssj0023338
Score 2.314651
Snippet A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2238
SubjectTerms Algorithms
Elbow
factorization algorithms
fast orthogonal search
high-density SEMG
muscle force estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hxIEeEF8toVtkKg69RDhxEtvHBW3gAlSCStwix3ZYpCVZbbL8_o6TbLRbIfXCMfZEcjzjzDzb8wbgIspprAWXPremBSiJn0uW-EGgQ2mCIi_yqC02we_vxfOz_L1W6svdCevogbuJu2TowLmKi1gkjgqdS2F0JAtR5MalTbZ55JTLFZjqoRZD5NXxCOH79LIOBOXoCMWG92lJ-j-KLP-9ILnmcdJ92OtDRTLuhngAW7Y8hC9rBIJHMB-Tx8ndjZ9WC23JBJdrl4lI0tWdK3KFbsoQbFIkVXVDHhbNtHpx8TfprhqTu7aINLmulvMZirqdWRR1m_l9jiYZz17woZm-1cfwJ508Xd_6fQ0FXyPwbXyVyEBThjjPFLGxglGDKlBUJe68xUqcT6nDpGDW5ZZrx3UTaQwiLFeF4TZkX2G7rEp7AkRJzZQMpI40jyyGu_gjVaGVcWgiak3swa_V3Ga6Jxh3dS5mGQINp4ZsUIMHPwfReceq8ZHQlVPQIOCIsNsGNI-sN4_sf-bhwWil3qxfnXWGMFe4z2fYfT5047pyhyWqtNUSZWgiEJviWDz41lnDMBJ04ZIzzjzgG3ayMdTNnvJ12nJ3I17EgDA-_Yxv-w67GL4Jt9McBCPYbhZL-wN29HvzWi_O2gXxF4LQD1M
  priority: 102
  providerName: Directory of Open Access Journals
Title A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/29997373
https://www.proquest.com/docview/2108751837
https://www.proquest.com/docview/2068924807
https://pubmed.ncbi.nlm.nih.gov/PMC6069375
https://doaj.org/article/33927a5f5869466798dc49f8fbd59017
Volume 18
WOSCitedRecordID wos000441334300260&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceMMGlsogDlyiTeIktk-oXSXAoaXiIZVT5NpOu1JJuknKkd_OTJJmt2jFhUukOBNprPHY843tbwh5Gy69SAsuXW5NC1BidylZ7Pq-DqTx82W-DNtiE3w2E4uFnPcJt7o_VrmfE9uJ2pQac-RnAE0EbhEw_n576WLVKNxd7Uto3CbHWDYbxzlfXAEuBvirYxNiAO3Pal94HJZDcbAGtVT9N8WXfx-TvLbupA_-V-OH5H4fcdJxN0QekVu2eEzuXeMhfEK2Y_o1mX5w07LSlibg9d2FRpruj27RCax2hkKToqmqG_q5atblCsN42p1YptO2FjU9L3fbDYhighdEcU-gv-pJx5sVvDTrn_VT8j1Nvp1_dPtSDK4G_Ny4Kpa-9hjARZNHxgrmGbCk8lSMPbSSSyF1EOfM4hV1jZQ5oYZYxHKVG24D9owcFWVhTwhVUjMlfalDzUMLUTPMxyqwMgpM6FkTOeTd3jiZ7nnKsVzGJgO8gnbMBjs65M0guu3IOW4SmqCFBwHk024bymqV9e6JvwRcRXkkYiTch-4YHcpc5EuDl3O5Q073Ns56J6-zKwM75PXwGdwT91xUYcsdyHixAIgLujjkeTecBk0gEpCcceYQfjDQDlQ9_FJcrFsKcICdEFdGL_6t1ktyF-I7galo3z8lR021s6_IHf2ruairUesr7VOMyPEkmc2_jNqUBDynvxNom3-azn_8ASAIJL4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk48H4YCiwIJC5Wba_t9R4QSktCqzYBiSLlZta766RSiEPsgPhT_EZm_EgbVHHrgaPtsTVrf56Zb3dnBuBVmHmRToR0hTU1QYndTPLY9X0dSOPnWZ6FdbMJMRol47H8tAW_u1wY2lbZ2cTaUJtC0xz5LlKThJYIuHi3-O5S1yhaXe1aaDSwOLK_fiJlK98evsfv-zoIBv2T_QO37SrgaqSClati6WuPI_MxeWRswj2DSilPxfR4K4VMpA7inFvKttZU_SXU6FatULkRlgodoMm_gnZcENkT4zOCx5HvNdWLOJfebunjA9D9Jhs-r24NcFE8-_e2zHN-bnDrf3tDt-FmG1GzXvML3IEtO78LN87VWbwHix773B9-cAfFUlvWR6vWJGyyQbc1je2hNzcMTyk2UGXFPi6raTEhmsKaHdlsWPfaZvvFajFDUZrARlFa82hTWVlvNsGDavqtvA9fLmXID2B7XsztI2BKaq6kL3WoRWiRFaC_UYGVUWBCz5rIgTcdGFLd1mGndiCzFPkY4SZd48aBl2vRRVN85CKhPULUWoDqhdcniuUkbc0P3RIIFeVRElNDARyO0aHMkzwzlHwsHNjpMJW2RqxMzwDlwIv1ZTQ_tKak5rZYoYwXJ0jhURcHHjbwXWuCkY4UXHAHxAawN1TdvDI_ndYlzpFWY9wcPf63Ws_h2sHJ8Dg9PhwdPYHrGMsmNO3u-zuwXS1X9ilc1T-q03L5rP5PGXy9bNj_AXA_eb8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUL0wBtqKLAgkLhYsb2213tAKG1jiEpCJEAqJ7PeXSeVQhxiB8Rf49cx6xcNqrj1wDH22Bknn2fm250HwHM_dQIZMW4zrSqCEtopp6HtutLjys3SLPWrYRNsMolOT_l0B361tTAmrbK1iZWhVrk0a-R9pCaR2SKgrJ81aRHT4_j16pttJkiZndZ2nEYNkRP98wfSt-LV6Bj_6xeeFw8_Hr21mwkDtkRaWNoi5K50KLIglQVKR9RRqKBwRGi-SnPGIy69MKPaVF5L0wnGl-hiNROZYto0PUDzv4shue_1YHc6Gk8_d3SPIvurexlRyp1-4eIt0BlHWx6wGhRwUXT7d5LmOa8X3_iff6-bcL2JtcmgfjluwY5e3oa9cx0Y78BqQD4Mx2_sOF9LTYZo7-pSThK3SWvkEP28InhIkFgUJXm_Luf5zBAYUudqk3E1hZsc5ZvVAkXN0jaKmt2QpsiVDBYz_FDOvxZ34dOlPPI96C3zpd4HIrikgrtc-pL5GvkCeiLhaR54yne0Cix42QIjkU2HdjMoZJEgUzMYSjoMWfCsE13VbUkuEjo06OoETCfx6kC-niWNYTKXeEwEWRCFZtQAPo6SPs-iLFWmLJlZcNDiK2nMW5H8AZcFT7vTaJjMbpNY6nyDMk4YIblHXSy4X0O50wRjIM4ooxawLZBvqbp9Znk2r5qfI-HGiDp48G-1nsBVRHvybjQ5eQjXMMiNzHq86x5Ar1xv9CO4Ir-XZ8X6cfPSEvhy2bj_DVx9hA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SEMG-Force+Estimation+Framework+Based+on+a+Fast+Orthogonal+Search+Method+Coupled+with+Factorization+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Xiang&rft.au=Yuan%2C+Yuan&rft.au=Cao%2C+Shuai&rft.au=Zhang%2C+Xu&rft.date=2018-07-11&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=18&rft.issue=7&rft.spage=2238&rft_id=info:doi/10.3390%2Fs18072238&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon