Controllable Blind AC FDIA via Physics-Informed Extrapolative AVAE

False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 25; H. 3; S. 943
Hauptverfasser: Zhao, Siliang, Luo, Wuman, Shu, Qin, Xu, Fangwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 05.02.2025
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms.
AbstractList False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms.
False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms.False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms.
Audience Academic
Author Xu, Fangwei
Luo, Wuman
Zhao, Siliang
Shu, Qin
AuthorAffiliation 2 School of Applied Sciences, Macao Polytechnic University, Macao, China; luowuman@mpu.edu.mo
1 College of Electrical Engineering, Sichuan University, Chengdu 610000, China; 15913109663@163.com (S.Z.); shuqin@scu.edu.cn (Q.S.)
AuthorAffiliation_xml – name: 1 College of Electrical Engineering, Sichuan University, Chengdu 610000, China; 15913109663@163.com (S.Z.); shuqin@scu.edu.cn (Q.S.)
– name: 2 School of Applied Sciences, Macao Polytechnic University, Macao, China; luowuman@mpu.edu.mo
Author_xml – sequence: 1
  givenname: Siliang
  orcidid: 0000-0002-2196-5130
  surname: Zhao
  fullname: Zhao, Siliang
– sequence: 2
  givenname: Wuman
  surname: Luo
  fullname: Luo, Wuman
– sequence: 3
  givenname: Qin
  surname: Shu
  fullname: Shu, Qin
– sequence: 4
  givenname: Fangwei
  surname: Xu
  fullname: Xu, Fangwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39943582$$D View this record in MEDLINE/PubMed
BookMark eNpdkstOGzEUhi1EVW5d8AJoJDZ0MdS38dgrNKShjYTULoCt5dsER5NxsCcRvD0eQiOoLcvW8Xd--1yOwH4fegfAKYKXhAj4I-EKEigo2QOHiGJacozh_ofzAThKaQEhJoTwr-CAiAxXHB-C60nohxi6TunOFded723RTIqbn7Om2HhV_H18Sd6kcta3IS6dLabPQ1Sr0KnBb1zRPDTTE_ClVV1y3973Y3B_M72b_C5v__yaTZrb0lAmhlIhYrFFGGHtcMtF5QhCLdfM1kIr6GzrLGxRrWpea8OVxdTmgSDVGmtTk2Mw2-raoBZyFf1SxRcZlJdvhhDnUsXBm85JTZhDjCqms7ulSBiNuK7GpbG1NGtdbbVWa52jMi4nQXWfRD_f9P5RzsNGIsQxpJRkhYt3hRie1i4NcumTcTmRvQvrJAliDLNavKHn_6GLsI59ztVIVQJxVo_U5ZaaqxyBz_nOD5s8rVt6kwve-mxvOMEsLzI6nH2MYff5f8XNwPctYGJIKbp2hyAox8aRu8Yhr2WNsnw
Cites_doi 10.1109/TSG.2022.3164874
10.1109/TSP.2014.2385670
10.1109/TSG.2018.2813280
10.1109/TSG.2021.3102329
10.1016/j.segan.2024.101524
10.1109/TPWRS.2015.2504950
10.1109/TSG.2022.3216625
10.1145/1952982.1952995
10.1109/PESGM.2014.6939486
10.1109/TPWRS.2010.2051168
10.1109/TSG.2014.2382714
10.1109/TCYB.2021.3125345
10.1109/TSG.2016.2532347
10.1201/9780203913673
10.1109/PESMG.2013.6672638
10.1109/TPWRD.2009.2028796
10.1109/TII.2024.3390389
10.1109/ACCESS.2020.2988284
10.1145/3575813.3597352
10.1109/TSG.2015.2495133
10.1109/TSG.2017.2708114
10.1109/TPWRS.2018.2818746
10.1109/TSG.2020.3011391
10.1109/TSG.2013.2291661
10.1109/TSG.2020.3033520
10.1109/TII.2021.3129487
10.1109/TII.2024.3374374
10.1109/TSG.2021.3106246
10.1109/JIOT.2022.3147040
10.1109/TSG.2022.3159842
10.1002/sys.21239
10.1109/TSG.2015.2490603
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25030943
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b36e164a6b104d419cb18b518b5b2dd4
PMC11820443
A832683233
39943582
10_3390_s25030943
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-a13d2d1212be2f895e311f8b6d79ba0edfed0f17a787bc8ad24dddd104bb2bc73
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419412600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:00:04 EDT 2025
Tue Nov 04 02:06:29 EST 2025
Thu Sep 04 18:23:22 EDT 2025
Tue Oct 07 07:18:33 EDT 2025
Tue Nov 04 18:13:32 EST 2025
Sun Feb 16 01:21:10 EST 2025
Sat Nov 29 07:14:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords AC state estimation
data driven
extrapolative adversarial variational autoencoder
controllable false data injection attack
physics informed
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a13d2d1212be2f895e311f8b6d79ba0edfed0f17a787bc8ad24dddd104bb2bc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2196-5130
OpenAccessLink https://www.proquest.com/docview/3165918673?pq-origsite=%requestingapplication%
PMID 39943582
PQID 3165918673
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b36e164a6b104d419cb18b518b5b2dd4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11820443
proquest_miscellaneous_3166267943
proquest_journals_3165918673
gale_infotracacademiconefile_A832683233
pubmed_primary_39943582
crossref_primary_10_3390_s25030943
PublicationCentury 2000
PublicationDate 20250205
PublicationDateYYYYMMDD 2025-02-05
PublicationDate_xml – month: 2
  year: 2025
  text: 20250205
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Narang (ref_22) 2024; 40
Zhao (ref_17) 2016; 7
Chin (ref_27) 2017; 9
Liu (ref_8) 2016; 8
ref_14
ref_36
ref_35
Zhang (ref_5) 2018; 33
ref_34
ref_33
Sommestad (ref_32) 2009; 24
Kim (ref_9) 2014; 63
Deng (ref_16) 2018; 10
Yu (ref_10) 2015; 6
Du (ref_28) 2021; 12
Yang (ref_19) 2024; 20
Tian (ref_31) 2022; 9
Liu (ref_7) 2014; 5
Yang (ref_12) 2022; 13
Zimmerman (ref_37) 2010; 26
Liu (ref_15) 2020; 12
Tian (ref_18) 2021; 52
Weng (ref_21) 2022; 14
Lu (ref_24) 2022; 18
Bhattacharjee (ref_38) 2022; 14
Chen (ref_25) 2020; 8
Liang (ref_13) 2016; 8
Liu (ref_23) 2022; 13
ref_3
Horowitz (ref_2) 2013; 16
ref_29
Rahman (ref_30) 2024; 20
Jiao (ref_20) 2021; 12
ref_26
Liu (ref_1) 2011; 14
ref_4
Liang (ref_6) 2015; 31
Lakshminarayana (ref_11) 2020; 12
References_xml – volume: 13
  start-page: 3174
  year: 2022
  ident: ref_12
  article-title: Blind false data injection attacks against state estimation based on matrix reconstruction
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3164874
– volume: 63
  start-page: 1102
  year: 2014
  ident: ref_9
  article-title: Subspace methods for data attack on state estimation: A data driven approach
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2385670
– ident: ref_3
– volume: 10
  start-page: 2871
  year: 2018
  ident: ref_16
  article-title: False data injection attacks against state estimation in power distribution systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2813280
– volume: 12
  start-page: 5280
  year: 2021
  ident: ref_20
  article-title: A new AC false data injection attack method without network information
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3102329
– ident: ref_34
– volume: 40
  start-page: 101524
  year: 2024
  ident: ref_22
  article-title: Physical model learning based false data injection attack on power system state estimation
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2024.101524
– volume: 31
  start-page: 3864
  year: 2015
  ident: ref_6
  article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2504950
– volume: 14
  start-page: 2338
  year: 2022
  ident: ref_38
  article-title: Deep latent space clustering for detection of stealthy false data injection attacks against AC state estimation in power systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3216625
– volume: 14
  start-page: 1
  year: 2011
  ident: ref_1
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC)
  doi: 10.1145/1952982.1952995
– ident: ref_14
  doi: 10.1109/PESGM.2014.6939486
– volume: 26
  start-page: 12
  year: 2010
  ident: ref_37
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
– volume: 6
  start-page: 1219
  year: 2015
  ident: ref_10
  article-title: Blind false data injection attack using PCA approximation method in smart grid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2382714
– volume: 52
  start-page: 13699
  year: 2021
  ident: ref_18
  article-title: Joint adversarial example and false data injection attacks for state estimation in power systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3125345
– volume: 8
  start-page: 2617
  year: 2016
  ident: ref_8
  article-title: Local topology attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2532347
– ident: ref_33
  doi: 10.1201/9780203913673
– ident: ref_35
  doi: 10.1109/PESMG.2013.6672638
– volume: 24
  start-page: 1801
  year: 2009
  ident: ref_32
  article-title: Modeling security of power communication systems using defense graphs and influence diagrams
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2009.2028796
– volume: 20
  start-page: 9887
  year: 2024
  ident: ref_19
  article-title: AC False Data Injection Attack Based on Robust Tensor Principle Component Analysis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3390389
– volume: 8
  start-page: 82819
  year: 2020
  ident: ref_25
  article-title: Image denoising with generative adversarial networks and its application to cell image enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988284
– ident: ref_26
  doi: 10.1145/3575813.3597352
– ident: ref_4
– volume: 8
  start-page: 1630
  year: 2016
  ident: ref_13
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2495133
– volume: 9
  start-page: 6298
  year: 2017
  ident: ref_27
  article-title: Blind false data attacks against AC state estimation based on geometric approach in smart grid communications
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2708114
– volume: 33
  start-page: 4775
  year: 2018
  ident: ref_5
  article-title: Can attackers with limited information exploit historical data to mount successful false data injection attacks on power systems?
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2818746
– volume: 12
  start-page: 635
  year: 2020
  ident: ref_11
  article-title: Data-driven false data injection attacks against power grids: A random matrix approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3011391
– ident: ref_29
– volume: 5
  start-page: 1665
  year: 2014
  ident: ref_7
  article-title: Local load redistribution attacks in power systems with incomplete network information
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2291661
– volume: 12
  start-page: 1626
  year: 2020
  ident: ref_15
  article-title: Network parameter coordinated false data injection attacks against power system AC state estimation
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3033520
– volume: 18
  start-page: 5275
  year: 2022
  ident: ref_24
  article-title: Constrained-Differential-Evolution-Based Stealthy Sparse Cyber-Attack and Countermeasure in an AC Smart Grid
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3129487
– volume: 20
  start-page: 8873
  year: 2024
  ident: ref_30
  article-title: Adversarial Artificial Intelligence in Blind False Data Injection in Smart Grid AC State Estimation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3374374
– volume: 12
  start-page: 5349
  year: 2021
  ident: ref_28
  article-title: Targeted false data injection attacks against AC state estimation without network parameters
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3106246
– volume: 9
  start-page: 14116
  year: 2022
  ident: ref_31
  article-title: Exploring Targeted and Stealthy False Data Injection Attacks via Adversarial Machine Learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3147040
– ident: ref_36
– volume: 14
  start-page: 649
  year: 2022
  ident: ref_21
  article-title: Attack power system state estimation by implicitly learning the underlying models
  publication-title: IEEE Trans. Smart Grid
– volume: 13
  start-page: 3203
  year: 2022
  ident: ref_23
  article-title: A GAN-Based Data Injection Attack Method on Data-Driven Strategies in Power Systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3159842
– volume: 16
  start-page: 401
  year: 2013
  ident: ref_2
  article-title: The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems
  publication-title: Syst. Eng.
  doi: 10.1002/sys.21239
– volume: 7
  start-page: 6
  year: 2016
  ident: ref_17
  article-title: Forecasting-Aided Imperfect False Data Injection Attacks Against Power System Nonlinear State Estimation
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2490603
SSID ssj0023338
Score 2.4413729
Snippet False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 943
SubjectTerms AC state estimation
Adaptability
controllable false data injection attack
data driven
Electric power systems
extrapolative adversarial variational autoencoder
Iran
Knowledge
Laws, regulations and rules
Machine learning
Methods
Parameter estimation
Physics
physics informed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgvl1dJYrgqdg03T6O3XUXvSweVLyFTJLignTFXcWf70zaXbZ48GIhlybQ6UwmMx-ZfGHsytJenYzTQIPWAXFhBnmicS5rB0kGgE4W-8sm0vE4e3nJH1au-qKasJoeuFbcDcjEYUqvE0DgYGORGxAZ9KhBZK1nAg3TfAGmGqglEXnVPEISQf3NDAO9pBq6VvTxJP2_l-KVWNSuk1wJPKMdtt1kjLyoJd1la67aY1srPIL7rD-oC87f6BwU72PmaHkx4KPb-4J_TTT3ZZ5mFtRnj5zlw2_80vv0zbN-8-K5GB6wp9HwcXAXNJcjBAYR7TzQQtrICow84KIyy3tOClFmkNg0Bx06WzobliLV6JFgMm2j2OKDSgSIwKTykK1X08odMx4hUI00lCDBEF9aXmamtC6UuUM0IkWHXS6Upt5rDgyF2IE0q5aa7bA-qXM5gGir_Qs0pmqMqf4yZoddkzEUORfqwejmjADKSTRVqsD1J8Em8XPdhb1U43UzJQVOPGLow-6LZTf6C22C6MpNP_0YxHCpl_ioNu9SZkzWYjo53GFZy_Ctn2r3VJNXz8lNOC2MY3nyH2o4ZZsRXTNMxeG9Lluff3y6M7ZhvuaT2ce5n-k_lc4C9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Controllable Blind AC FDIA via Physics-Informed Extrapolative AVAE
URI https://www.ncbi.nlm.nih.gov/pubmed/39943582
https://www.proquest.com/docview/3165918673
https://www.proquest.com/docview/3166267943
https://pubmed.ncbi.nlm.nih.gov/PMC11820443
https://doaj.org/article/b36e164a6b104d419cb18b518b5b2dd4
Volume 25
WOSCitedRecordID wos001419412600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BCxI98CiFGkpkEBInq7HX8eOEnOCIHhpFCFA4WTu7a4hU2SFOK078dmbWThoLiQuW7IO9ciaemZ39dme_AXirea1OhLEnUUqPuTC9NJJky9JglCCSk4W22EQ8myWLRTrvJtyaLq1y2yfajlrXiufIz4VPL2X2NfF-9dPjqlG8utqV0LgLh1w2m-08XtwCLkH4q2UTEgTtzxsK94Iz6XoxyFL1_90h70WkfrbkXviZPvpfwR_Dw27g6WatpTyBO6Y6hqM9OsJjuG_TQVXzFMaTNoP9ijdWuWMaimo3m7jTDxeZe7OUbtfQazczGe3mv0joVX1lacTd7GuWn8CXaf558tHrqi14iiDyxpO-0IH2KZShCcokHRnh-2WCkY5TlEOjS6OHpR9LcnFUidRBqOkgOIcYoIrFMzio6sqcghsQ8g0klihQMQFbWiaq1GYoUkPwRvgOvNl-_2LVkmoUBEZYScVOSQ6MWTO7BsyDbW_U6-9F51YFisgQ4JMRkhw69FOFfoIjPjHQOnTgHeu1YG-l76Bkt-mA5GTeqyKjDi2iU9DPnW3VV3Ru3BS3unPg9e4xOSCvqsjK1Ne2DYHC2Er8vLWUncw0-gt5K7IDSc-Gen-q_6Ra_rAk3wz8hmEoXvxbrpfwIOCKxJxHPjqDg8362ryCe-pms2zWA-sO9poM4HCcz-afBnbWga6Xv3O6N7-4nH_7A0tEGmw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPMrLUGBBIE5Wba_jxwEhJ03UqCXiUFBuZl9uI1V2SNICf4rfyMzaTmMhcesBS77YK2e8_nZ2v-zMNwBvNe3V8TB2hRTCJS1MN40EYlkYGSVS4iALbbGJeDJJptP08xb8bnNhKKyy9YnWUetK0X_ke9zHh5L6Gv84_-5S1SjaXW1LaNSwODS_fiBlW34Y7-P3fRcEo-Hx4MBtqgq4CqngyhU-14H20WVLExRJ2jPc94tERjpOpfCMLoz2Cj8WCGWpEqGDUOOBtEXKQKqY43OvwXX04zGRvXh6SfA48r1avYjz1Ntb4vKCU-ReZ86zpQH-ngA2ZsBudObGdDe697911H242yysWVaPhAewZcoduLMht7gDN224q1o-hP6gjtA_o8Qx1seltmbZgI32xxm7mAnWNHTrZC2j2fAndtK8OrMy6Sz7mg0fwZcreZ3HsF1WpXkKLEBmHwhZSC4VCcylRaIKbTyeGqRv3HfgTfu983ktGpIj2SJQ5GtQONAnJKwbkM63vVAtTvLGbeSSRwYJrYgk2qFDP1XST2SPThloHTrwnnCUkzfCflCiSapAO0nXK8_QYUd4cvy53RYueeOmlvklVhx4vb6NDoZ2jURpqnPbBklvbC1-UiNzbTOubkNKtXYg6WC281LdO-Xs1IqYE7H1wpA_-7ddr-DWwfGno_xoPDl8DrcDqr5MMfO9XdheLc7NC7ihLlaz5eKlHYoMvl01pP8ANIB0cQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBw4LG8AgsEBOIUNbHTPA4IpS9RLVQ9ANo9GTt2oNIqKU13gb_Gr2Mmj9IIidseiJRLYqUT5_N4vnr8DcALTWt13A8dqaR0SAvTiQOJWJZGBZFSOMj8qthEOJ9Hx8fxYg9-tXthKK2y9YmVo9ZFSv-R97mHDyX1Nd7PmrSIxXj6ZvXNoQpStNLaltOoIXJkfn5H-la-no3xW79kbDr5MHrrNBUGnBRp4caRHtdMe-i-lWFZFA8M97wsUoEOYyVdozOj3cwLJcJapZHUzNd4IIVRiqk05PjcS7CPIbnPerC_mL1fnGzpHkf2V2sZcR67_RKDDU55fJ0ZsCoU8Pd0sDMfdnM1dya_6c3_udtuwY0m5LaTeozchj2TH8D1HSHGA7hSJcKm5R0Yjurc_VPaUmYPMQjXdjKyp-NZYp8vpd00dOptXEbbkx_YYavitBJQt5NPyeQufLyQ17kHvbzIzQOwGXJ-JlWmuEpJei7OojTTxuWxQWLHPQuet99erGo5EYE0jAAitgCxYEio2DYgBfDqQrH-IhqHIhQPDFJdGSi0Q_tenCovUgM6FdPat-AVYUqQn8J-SGWz3QLtJMUvkaArD_Dk-HOHLXRE48BK8Qc3Fjzb3kbXQ-tJMjfFWdUG6XBYWXy_RunWZox7fdqEbUHUwW_npbp38uXXSt6cKK_r-_zhv-16ClcRyeLdbH70CK4xKstMyfSDQ-ht1mfmMVxOzzfLcv2kGZc2fL5oTP8GB1h-wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Blind+AC+FDIA+via+Physics-Informed+Extrapolative+AVAE&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Siliang&rft.au=Luo%2C+Wuman&rft.au=Shu%2C+Qin&rft.au=Xu%2C+Fangwei&rft.date=2025-02-05&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=3&rft_id=info:doi/10.3390%2Fs25030943&rft.externalDocID=A832683233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon