Controllable Blind AC FDIA via Physics-Informed Extrapolative AVAE
False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confin...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 25; číslo 3; s. 943 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
05.02.2025
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms. |
|---|---|
| AbstractList | False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms. False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms.False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and voltage measurements are absent. Current machine learning-based approaches struggle to effectively control state estimation errors and are confined to the data distribution of training sets. To address these limitations, we propose the physics-informed extrapolative adversarial variational autoencoder (PI-ExAVAE) for generating controllable and stealthy false data injections. By incorporating physically consistent priors derived from the AC power flow equations, which enforce both the physical laws of power systems and the stealth requirements to evade bad data detection mechanisms, the model learns to generate attack vectors that are physically plausible and stealthy while inducing significant and controllable deviations in state estimation. Experimental results on IEEE-14 and IEEE-118 systems show that the model achieves a 90% success rate in bypassing detection tests for most attack configurations and outperforms methods like SAGAN by generating smoother, more realistic deviations. Furthermore, the use of physical priors enables the model to extrapolate beyond the training data distribution, effectively targeting unseen operational scenarios. This highlights the importance of integrating physics knowledge into data-driven approaches to enhance adaptability and robustness against evolving detection mechanisms. |
| Audience | Academic |
| Author | Xu, Fangwei Luo, Wuman Zhao, Siliang Shu, Qin |
| AuthorAffiliation | 2 School of Applied Sciences, Macao Polytechnic University, Macao, China; luowuman@mpu.edu.mo 1 College of Electrical Engineering, Sichuan University, Chengdu 610000, China; 15913109663@163.com (S.Z.); shuqin@scu.edu.cn (Q.S.) |
| AuthorAffiliation_xml | – name: 1 College of Electrical Engineering, Sichuan University, Chengdu 610000, China; 15913109663@163.com (S.Z.); shuqin@scu.edu.cn (Q.S.) – name: 2 School of Applied Sciences, Macao Polytechnic University, Macao, China; luowuman@mpu.edu.mo |
| Author_xml | – sequence: 1 givenname: Siliang orcidid: 0000-0002-2196-5130 surname: Zhao fullname: Zhao, Siliang – sequence: 2 givenname: Wuman surname: Luo fullname: Luo, Wuman – sequence: 3 givenname: Qin surname: Shu fullname: Shu, Qin – sequence: 4 givenname: Fangwei surname: Xu fullname: Xu, Fangwei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39943582$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkstOGzEUhi1EVW5d8AJoJDZ0MdS38dgrNKShjYTULoCt5dsER5NxsCcRvD0eQiOoLcvW8Xd--1yOwH4fegfAKYKXhAj4I-EKEigo2QOHiGJacozh_ofzAThKaQEhJoTwr-CAiAxXHB-C60nohxi6TunOFded723RTIqbn7Om2HhV_H18Sd6kcta3IS6dLabPQ1Sr0KnBb1zRPDTTE_ClVV1y3973Y3B_M72b_C5v__yaTZrb0lAmhlIhYrFFGGHtcMtF5QhCLdfM1kIr6GzrLGxRrWpea8OVxdTmgSDVGmtTk2Mw2-raoBZyFf1SxRcZlJdvhhDnUsXBm85JTZhDjCqms7ulSBiNuK7GpbG1NGtdbbVWa52jMi4nQXWfRD_f9P5RzsNGIsQxpJRkhYt3hRie1i4NcumTcTmRvQvrJAliDLNavKHn_6GLsI59ztVIVQJxVo_U5ZaaqxyBz_nOD5s8rVt6kwve-mxvOMEsLzI6nH2MYff5f8XNwPctYGJIKbp2hyAox8aRu8Yhr2WNsnw |
| Cites_doi | 10.1109/TSG.2022.3164874 10.1109/TSP.2014.2385670 10.1109/TSG.2018.2813280 10.1109/TSG.2021.3102329 10.1016/j.segan.2024.101524 10.1109/TPWRS.2015.2504950 10.1109/TSG.2022.3216625 10.1145/1952982.1952995 10.1109/PESGM.2014.6939486 10.1109/TPWRS.2010.2051168 10.1109/TSG.2014.2382714 10.1109/TCYB.2021.3125345 10.1109/TSG.2016.2532347 10.1201/9780203913673 10.1109/PESMG.2013.6672638 10.1109/TPWRD.2009.2028796 10.1109/TII.2024.3390389 10.1109/ACCESS.2020.2988284 10.1145/3575813.3597352 10.1109/TSG.2015.2495133 10.1109/TSG.2017.2708114 10.1109/TPWRS.2018.2818746 10.1109/TSG.2020.3011391 10.1109/TSG.2013.2291661 10.1109/TSG.2020.3033520 10.1109/TII.2021.3129487 10.1109/TII.2024.3374374 10.1109/TSG.2021.3106246 10.1109/JIOT.2022.3147040 10.1109/TSG.2022.3159842 10.1002/sys.21239 10.1109/TSG.2015.2490603 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25030943 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b36e164a6b104d419cb18b518b5b2dd4 PMC11820443 A832683233 39943582 10_3390_s25030943 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-a13d2d1212be2f895e311f8b6d79ba0edfed0f17a787bc8ad24dddd104bb2bc73 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419412600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:00:04 EDT 2025 Tue Nov 04 02:06:29 EST 2025 Thu Sep 04 18:23:22 EDT 2025 Tue Oct 07 07:18:33 EDT 2025 Tue Nov 04 18:13:32 EST 2025 Sun Feb 16 01:21:10 EST 2025 Sat Nov 29 07:14:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | AC state estimation data driven extrapolative adversarial variational autoencoder controllable false data injection attack physics informed |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-a13d2d1212be2f895e311f8b6d79ba0edfed0f17a787bc8ad24dddd104bb2bc73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2196-5130 |
| OpenAccessLink | https://www.proquest.com/docview/3165918673?pq-origsite=%requestingapplication% |
| PMID | 39943582 |
| PQID | 3165918673 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b36e164a6b104d419cb18b518b5b2dd4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11820443 proquest_miscellaneous_3166267943 proquest_journals_3165918673 gale_infotracacademiconefile_A832683233 pubmed_primary_39943582 crossref_primary_10_3390_s25030943 |
| PublicationCentury | 2000 |
| PublicationDate | 20250205 |
| PublicationDateYYYYMMDD | 2025-02-05 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250205 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Narang (ref_22) 2024; 40 Zhao (ref_17) 2016; 7 Chin (ref_27) 2017; 9 Liu (ref_8) 2016; 8 ref_14 ref_36 ref_35 Zhang (ref_5) 2018; 33 ref_34 ref_33 Sommestad (ref_32) 2009; 24 Kim (ref_9) 2014; 63 Deng (ref_16) 2018; 10 Yu (ref_10) 2015; 6 Du (ref_28) 2021; 12 Yang (ref_19) 2024; 20 Tian (ref_31) 2022; 9 Liu (ref_7) 2014; 5 Yang (ref_12) 2022; 13 Zimmerman (ref_37) 2010; 26 Liu (ref_15) 2020; 12 Tian (ref_18) 2021; 52 Weng (ref_21) 2022; 14 Lu (ref_24) 2022; 18 Bhattacharjee (ref_38) 2022; 14 Chen (ref_25) 2020; 8 Liang (ref_13) 2016; 8 Liu (ref_23) 2022; 13 ref_3 Horowitz (ref_2) 2013; 16 ref_29 Rahman (ref_30) 2024; 20 Jiao (ref_20) 2021; 12 ref_26 Liu (ref_1) 2011; 14 ref_4 Liang (ref_6) 2015; 31 Lakshminarayana (ref_11) 2020; 12 |
| References_xml | – volume: 13 start-page: 3174 year: 2022 ident: ref_12 article-title: Blind false data injection attacks against state estimation based on matrix reconstruction publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3164874 – volume: 63 start-page: 1102 year: 2014 ident: ref_9 article-title: Subspace methods for data attack on state estimation: A data driven approach publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2385670 – ident: ref_3 – volume: 10 start-page: 2871 year: 2018 ident: ref_16 article-title: False data injection attacks against state estimation in power distribution systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2813280 – volume: 12 start-page: 5280 year: 2021 ident: ref_20 article-title: A new AC false data injection attack method without network information publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3102329 – ident: ref_34 – volume: 40 start-page: 101524 year: 2024 ident: ref_22 article-title: Physical model learning based false data injection attack on power system state estimation publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2024.101524 – volume: 31 start-page: 3864 year: 2015 ident: ref_6 article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2504950 – volume: 14 start-page: 2338 year: 2022 ident: ref_38 article-title: Deep latent space clustering for detection of stealthy false data injection attacks against AC state estimation in power systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3216625 – volume: 14 start-page: 1 year: 2011 ident: ref_1 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC) doi: 10.1145/1952982.1952995 – ident: ref_14 doi: 10.1109/PESGM.2014.6939486 – volume: 26 start-page: 12 year: 2010 ident: ref_37 article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – volume: 6 start-page: 1219 year: 2015 ident: ref_10 article-title: Blind false data injection attack using PCA approximation method in smart grid publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2382714 – volume: 52 start-page: 13699 year: 2021 ident: ref_18 article-title: Joint adversarial example and false data injection attacks for state estimation in power systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3125345 – volume: 8 start-page: 2617 year: 2016 ident: ref_8 article-title: Local topology attacks in smart grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2532347 – ident: ref_33 doi: 10.1201/9780203913673 – ident: ref_35 doi: 10.1109/PESMG.2013.6672638 – volume: 24 start-page: 1801 year: 2009 ident: ref_32 article-title: Modeling security of power communication systems using defense graphs and influence diagrams publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2009.2028796 – volume: 20 start-page: 9887 year: 2024 ident: ref_19 article-title: AC False Data Injection Attack Based on Robust Tensor Principle Component Analysis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3390389 – volume: 8 start-page: 82819 year: 2020 ident: ref_25 article-title: Image denoising with generative adversarial networks and its application to cell image enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988284 – ident: ref_26 doi: 10.1145/3575813.3597352 – ident: ref_4 – volume: 8 start-page: 1630 year: 2016 ident: ref_13 article-title: A review of false data injection attacks against modern power systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2495133 – volume: 9 start-page: 6298 year: 2017 ident: ref_27 article-title: Blind false data attacks against AC state estimation based on geometric approach in smart grid communications publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2708114 – volume: 33 start-page: 4775 year: 2018 ident: ref_5 article-title: Can attackers with limited information exploit historical data to mount successful false data injection attacks on power systems? publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2818746 – volume: 12 start-page: 635 year: 2020 ident: ref_11 article-title: Data-driven false data injection attacks against power grids: A random matrix approach publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3011391 – ident: ref_29 – volume: 5 start-page: 1665 year: 2014 ident: ref_7 article-title: Local load redistribution attacks in power systems with incomplete network information publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2291661 – volume: 12 start-page: 1626 year: 2020 ident: ref_15 article-title: Network parameter coordinated false data injection attacks against power system AC state estimation publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3033520 – volume: 18 start-page: 5275 year: 2022 ident: ref_24 article-title: Constrained-Differential-Evolution-Based Stealthy Sparse Cyber-Attack and Countermeasure in an AC Smart Grid publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3129487 – volume: 20 start-page: 8873 year: 2024 ident: ref_30 article-title: Adversarial Artificial Intelligence in Blind False Data Injection in Smart Grid AC State Estimation publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3374374 – volume: 12 start-page: 5349 year: 2021 ident: ref_28 article-title: Targeted false data injection attacks against AC state estimation without network parameters publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3106246 – volume: 9 start-page: 14116 year: 2022 ident: ref_31 article-title: Exploring Targeted and Stealthy False Data Injection Attacks via Adversarial Machine Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3147040 – ident: ref_36 – volume: 14 start-page: 649 year: 2022 ident: ref_21 article-title: Attack power system state estimation by implicitly learning the underlying models publication-title: IEEE Trans. Smart Grid – volume: 13 start-page: 3203 year: 2022 ident: ref_23 article-title: A GAN-Based Data Injection Attack Method on Data-Driven Strategies in Power Systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3159842 – volume: 16 start-page: 401 year: 2013 ident: ref_2 article-title: The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems publication-title: Syst. Eng. doi: 10.1002/sys.21239 – volume: 7 start-page: 6 year: 2016 ident: ref_17 article-title: Forecasting-Aided Imperfect False Data Injection Attacks Against Power System Nonlinear State Estimation publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2490603 |
| SSID | ssj0023338 |
| Score | 2.4413729 |
| Snippet | False data injection attacks (FDIAs) targeting AC state estimation pose significant challenges, especially when only power measurements are available, and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 943 |
| SubjectTerms | AC state estimation Adaptability controllable false data injection attack data driven Electric power systems extrapolative adversarial variational autoencoder Iran Knowledge Laws, regulations and rules Machine learning Methods Parameter estimation Physics physics informed |
| SummonAdditionalLinks | – databaseName: DOAJ : Directory of Open Access Journals [open access] dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBal9NAdxtZ2m7esqGPQk6kl2bJ8dLKEFkrpYSu9Cf1kgeKUOAn98_skOyGmh11m0MUSSP6epKcPv_cJoZ-8pJoKU6ROeJrmTmWpYkWeZtwLD1NK6Sil9HBb3t2Jx8fqfu-qrxAT1skDd8BdacYdHOkV10AcbE4qo4nQRSiaWhuVQLOy2pKpnmoxYF6djhADUn_VgqNnIYZu4H2iSP_brXjPFw3jJPccz-wDet-fGHHdjfQjOnDNCXq3pyN4isaTLuD8KeRB4TGcHC2uJ3j266bGm7nCMczTtGmXe-Qsnr5AT8-Lp6j6jeuHenqG_symvyfXaX85QmqA0a5SRZilloDn0Y56URWOEeKF5rastMqc9c5mnpQKVqQ2QlmaW3gARK2pNiX7hA6bReO-IJyZSuQWrENNAUAznTFHmLGeK82NLxP0YwuafO40MCRwh4Cs3CGboHGAc9cgyFbHF2BM2RtT_suYCboMxpBhcQEORvU5AjDOIFMla9h_OBQG3Y229pL9qmslI7yogkIfVF_sqmG9hJ8gqnGLdWwDHK6MI_7cmXc3Zjis5SFzOEFiYPjBRw1rmvnfqMkdeFqW5-zr_4DhGzqm4ZrhEBxejNDharl239GR2azm7fI8zvRXIHIDUQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Controllable Blind AC FDIA via Physics-Informed Extrapolative AVAE |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39943582 https://www.proquest.com/docview/3165918673 https://www.proquest.com/docview/3166267943 https://pubmed.ncbi.nlm.nih.gov/PMC11820443 https://doaj.org/article/b36e164a6b104d419cb18b518b5b2dd4 |
| Volume | 25 |
| WOSCitedRecordID | wos001419412600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_0TkEf_DhPjZ4liuBTuCS72WyeJK0pHniliB71KexXtHAktekdPvm3O7NJew2CLwaSh2Qhk8zMzv52Z39DyFuexioWOgmsqOKAWRkGkiYsCHklKjApqRyV0sWndDYTi0U27yfc2j6tctsnuo7aNBrnyE9pxJMM2dfo-9XPAKtG4epqX0LjNjnEstlo5-niBnBRwF8dmxAFaH_aQrinmEk3iEGOqv_vDnkvIg2zJffCz_Th_wr-iDzoB55-3lnKY3LL1kfk_h4d4RG569JBdfuEjCddBvslbqzyxzAUNX4-8acfznL_ein9vmHQbWayxi9-gdCr5tLRiPv5RV4ck6_T4svkY9BXWwg0QORNICNqYhNBKFM2rkSWWBpFlVDcpJmSoTWVNWEVpRJcXGkhTcwMHADnlIqVTulTclA3tX1O_FBnghlQd6wTJjlVIbUR1abiUnFdpR55s_3_5aoj1SgBjKCSyp2SPDJGzewaIA-2u9Gsv5e9W5WKcguAT3IFchgWZVpFQiV4qtgY5pF3qNcSvRX-g5b9pgOQE3mvyhw6NA4nhdedbNVX9m7clje688jr3WNwQFxVkbVtrlwbAIWpk_hZZyk7mWH0x3ArskfEwIYGHzV8Ui9_OJJvBH4hY_TFv-V6Se7FWJEY88iTE3KwWV_ZV-SOvt4s2_XIuYO7ihE5HBez-eeRm3WA6_nvAu7Nz87n3_4A1CAaxg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBVRY8CgvQ4EBUbGyas_4MV4g5KSJGjVELEqVnZmXS6TKDnFa4Kf4Ru7YThoLiV0XWPLGHtl3xsdn5tj3AfAuiqmkXIWu4Tl1AyM8V7AwcL0o5zlCSsg6ldLpOJ5M-HSafN6C36tYGOtWueLEmqh1qew38gPmR2Fis6-xj_Pvrq0aZf-urkpoNLA4Nr9-oGSrPowO8fnuUzocnPSP3LaqgKtQCi5d4TNNtY-ULQ3NeRIa5vs5l5GOEyk8o3OjvdyPBUJZKi40DTRuKFukpFLFDK97A24ij8dW7MXTK4HHUO812YsYS7yDCpcXzHrudea8ujTA3xPAxgzY9c7cmO6G9_-3gXoA99qFNUmbN-EhbJliF-5upFvchdu1u6uqHkGv33jon9vAMdLDpbYmaZ8MD0cpuZwJ0jZ0m2Ato8ngJw7SvDyv06ST9DQdPIYv19KdJ7BdlIV5BsRTCQ80wpmqMBARkx4zPlM6j4SMVB478Hb1vLN5kzQkQ7FlQZGtQeFAzyJh3cDm-a4PlIuzrKWNTLLIoKAVkUQ7dOAnSvpchnaXVOvAgfcWR5llIxwHJdqgCrTT5vXKUiTsCHeGt9tbwSVraarKrrDiwJv1aSQY-9dIFKa8qNug6I1ri582yFzbjKvbwIZaO8A7mO10qnummH2rk5hbYesFAXv-b7tew87RyadxNh5Njl_AHWqrL1uf-XAPtpeLC_MSbqnL5axavKpfRQJfrxvSfwDXjnTL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCo48CgFDAUMAnGyYu-uXweEnJeIWqIcoGpPZl-GSJUdkrTAX-PXMesXsZC49UAkX-KVPV5_np3PnvkG4FUQEkEi6Ts6yojDNHcdTn3muEEWZQgpLkoppZPjcDaLTk_j-Q78amphTFpl4xNLR60Kad6R96kX-LFRX6P9rE6LmI8m75bfHNNBynxpbdppVBA50j-_I31bv52O8F6_JmQy_jh879QdBhyJtHDjcI8qojx030KTLIp9TT0vi0SgwlhwV6tMKzfzQo6wFjLiijCFP6QwQhAhQ4rHvQa7GJIz0oPd-fTD_KylexTZX6VlRGns9tcYbFCTx9dZActGAX8vB1vrYTdXc2vxm9z5n6ftLtyuQ247qZ6Re7Cj8324tSXEuA83ykRYub4Pg2GVu39uSsrsAQbhyk6G9mQ0TezLBbfrgU5VxqWVPf6BE7YszksBdTs5ScYH8OlKLucB9PIi14_AdmUcMYVAJ9JnPKDCpdqjUmUBF4HMQgteNvc-XVZyIinSMAOQtAWIBQODinaAUQAv_yhWX9LaoaSCBhqpLg8E2qGYF0vhRcI3myBKMQveGEylxk_hPEhel1ugnUbxK03QlQe4UTzdYQOdtHZg6_QPbix40e5G12O-J_FcFxflGKTDYWnxwwqlrc0Y9zJThG1B1MFv56K6e_LF11Le3FBelzH6-N92PYc9RHJ6PJ0dPYGbxLRlNsn0_iH0NqsL_RSuy8vNYr16Vj-XNny-akz_Bqqmfxo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Blind+AC+FDIA+via+Physics-Informed+Extrapolative+AVAE&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Siliang&rft.au=Luo%2C+Wuman&rft.au=Shu%2C+Qin&rft.au=Xu%2C+Fangwei&rft.date=2025-02-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=3&rft.spage=943&rft_id=info:doi/10.3390%2Fs25030943&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25030943 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |