Matching Forensic Sketches to Mug Shot Photos

The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 33; číslo 3; s. 639 - 646
Hlavní autoři: Klare, Brendan, Zhifeng Li, Jain, A K
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.03.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0162-8828
1939-3539
1939-3539
DOI:10.1109/TPAMI.2010.180