An Evolving Multivariate Time Series Compression Algorithm for IoT Applications

The Internet of Things (IoT) is transforming how devices interact and share data, especially in areas like vehicle monitoring. However, transmitting large volumes of real-time data can result in high latency and substantial energy consumption. In this context, Tiny Machine Learning (TinyML) emerges...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 22; p. 7273
Main Authors: Costa, Hagi, Silva, Marianne, Sánchez-Gendriz, Ignacio, Viegas, Carlos M. D., Silva, Ivanovitch
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 14.11.2024
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Internet of Things (IoT) is transforming how devices interact and share data, especially in areas like vehicle monitoring. However, transmitting large volumes of real-time data can result in high latency and substantial energy consumption. In this context, Tiny Machine Learning (TinyML) emerges as a promising solution, enabling the execution of machine-learning models on resource-constrained embedded devices. This paper aims to develop two online multivariate compression approaches specifically designed for TinyML, utilizing the Typicality and Eccentricity Data Analytics (TEDA) framework. The proposed approaches are based on data eccentricity and do not require predefined mathematical models or assumptions about data distribution, thereby optimizing compression performance. The methodology involves applying the approaches to a case study using the OBD-II Freematics ONE+ dataset, which is focused on vehicle monitoring. Results indicate that both proposed approaches, whether parallel or sequential compression, show significant improvements in execution time and compression errors. These findings highlight the approach’s potential to enhance the performance of embedded IoT systems, thereby improving the efficiency and sustainability of vehicular applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24227273