A Variational Stacked Autoencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of Diesel Engine
Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper propose...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 20; H. 1; S. 223 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
31.12.2019
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms. |
|---|---|
| AbstractList | Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms. Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms. |
| Author | Zhang, Jinjie Zhao, Haipeng Jiang, Zhinong Chen, Kun Mao, Zhiwei |
| AuthorAffiliation | 1 Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China; chenkun_chn@163.com (K.C.); 2017400141@mail.buct.edu.cn (H.Z.) 2 Beijing Key Laboratory of High-End Mechanical Equipment Health Monitoring and Self-Recovery, Beijing University of Chemical Technology, Beijing 100029, China; jiangzn@mail.buct.edu.cn (Z.J.); zhangjinjie@mail.buct.edu.cn (J.Z.) |
| AuthorAffiliation_xml | – name: 1 Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China; chenkun_chn@163.com (K.C.); 2017400141@mail.buct.edu.cn (H.Z.) – name: 2 Beijing Key Laboratory of High-End Mechanical Equipment Health Monitoring and Self-Recovery, Beijing University of Chemical Technology, Beijing 100029, China; jiangzn@mail.buct.edu.cn (Z.J.); zhangjinjie@mail.buct.edu.cn (J.Z.) |
| Author_xml | – sequence: 1 givenname: Kun surname: Chen fullname: Chen, Kun – sequence: 2 givenname: Zhiwei orcidid: 0000-0001-5839-5066 surname: Mao fullname: Mao, Zhiwei – sequence: 3 givenname: Haipeng surname: Zhao fullname: Zhao, Haipeng – sequence: 4 givenname: Zhinong surname: Jiang fullname: Jiang, Zhinong – sequence: 5 givenname: Jinjie surname: Zhang fullname: Zhang, Jinjie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31906062$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktPGzEQgFcVqDzaQ_9AZakXekjxax--VIooFCQkDtBerYl3nDjd2KntpaK_vobQCBAXv-bzpxnNHFQ7Pnisqg-MfhFC0ePEKWWUc_Gm2meSy0nHOd15ct6rDlJaUsqFEN3bak8wRRva8P1qPSU_ITrILngYyHUG8wt7Mh1zQG9Cj5H8cXlBziGugr8j1wjRLMjVOruV-1uiNsRiGG6R3ERwnpzBOGTyzcHch-QSCbZcMOFATv3ceXxX7VoYEr5_3A-rH2enNyfnk8ur7xcn08uJkY3Kk8Zij30PgvNWQN3NWNN3qm-5bJCXShk1rG1nyioLIGbILG1NWxbBpDUI4rC62Hj7AEu9jm4F8U4HcPrhIcS5hpidGVB3IBVQWXTQS2uFakxHWWtbU3dYW1pcXzeu9ThbYW_Q5wjDM-nziHcLPQ-3ulEdb5QsgqNHQQy_R0xZr1wyOAzgMYxJl75ILris64J-eoEuwxhLbwpV17QUrur7jD4-zWibyv_GFuDzBjAxpBTRbhFG9f3Q6O3QFPb4BWtcfpiIUowbXvnxDxBKwvk |
| CitedBy_id | crossref_primary_10_3390_s22103884 crossref_primary_10_1016_j_measurement_2024_116216 crossref_primary_10_1088_1361_6501_abcefb crossref_primary_10_1109_ACCESS_2021_3057399 crossref_primary_10_3390_s20071991 crossref_primary_10_1016_j_arcontrol_2022_09_005 crossref_primary_10_1088_1361_6501_ad8cf6 crossref_primary_10_1016_j_knosys_2021_107142 crossref_primary_10_1088_1742_6596_1828_1_012040 crossref_primary_10_1038_s41598_023_47177_7 crossref_primary_10_1155_2022_1179192 crossref_primary_10_1177_14759217221113323 crossref_primary_10_3390_e24010036 crossref_primary_10_1080_01430750_2025_2508340 crossref_primary_10_3390_electronics11142249 crossref_primary_10_3390_electronics11131969 crossref_primary_10_3390_machines11050557 crossref_primary_10_1016_j_compag_2023_108556 crossref_primary_10_1088_1361_6501_ad3fd9 |
| Cites_doi | 10.1016/j.ymssp.2017.03.026 10.1016/j.apacoust.2018.09.002 10.1126/science.1127647 10.1016/j.ymssp.2009.06.012 10.1177/0142331211408492 10.1177/003754970107600201 10.1016/j.engfailanal.2016.04.022 10.1109/ACCESS.2019.2894764 10.1016/j.engappai.2019.04.013 10.1016/j.ymssp.2015.10.037 10.3390/s17122916 10.1109/SDPC.2019.00060 10.3233/JIFS-169524 10.1016/j.measurement.2018.08.010 10.1016/j.jprocont.2019.01.008 10.1016/j.measurement.2018.08.038 10.3390/s19112590 10.1162/neco.2006.18.7.1527 10.1016/j.ymssp.2017.06.033 10.1784/insi.2018.60.8.418 10.1016/j.ymssp.2015.10.024 10.1016/j.apacoust.2017.05.017 10.3390/s17122876 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s20010223 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_8a49a0477bad4ff396c8017f7c58e5f0 PMC6982694 31906062 10_3390_s20010223 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Plan of China grantid: Grant No. 2016YFF0203305 – fundername: Fundamental Research Funds for the Central Universities of China grantid: No. JD1912 and ZY1940 – fundername: Double First-rate Construction Special Funds grantid: No. ZD1601 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-6fededda32273a58b16d89d7246e222310c177b9f9faa3be1f07c7f07314fcea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510493100223&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:06:54 EDT 2025 Tue Nov 04 01:57:47 EST 2025 Fri Sep 05 14:08:16 EDT 2025 Tue Oct 07 06:56:01 EDT 2025 Mon Jul 21 06:03:18 EDT 2025 Tue Nov 18 21:39:48 EST 2025 Sat Nov 29 07:15:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | deep learning diesel engine fault diagnosis autoencoder harmony search optimizer |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-6fededda32273a58b16d89d7246e222310c177b9f9faa3be1f07c7f07314fcea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This Paper is an Expanded Version of “Valve Fault Diagnosis of Internal Combustion Engine Based on An Improved Stacked Autoencoder” in the Proceedings of the SDPC 2019, Beijing, China, 15–17 August 2019. |
| ORCID | 0000-0001-5839-5066 |
| OpenAccessLink | https://doaj.org/article/8a49a0477bad4ff396c8017f7c58e5f0 |
| PMID | 31906062 |
| PQID | 2550310950 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a49a0477bad4ff396c8017f7c58e5f0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6982694 proquest_miscellaneous_2334232455 proquest_journals_2550310950 pubmed_primary_31906062 crossref_primary_10_3390_s20010223 crossref_citationtrail_10_3390_s20010223 |
| PublicationCentury | 2000 |
| PublicationDate | 20191231 |
| PublicationDateYYYYMMDD | 2019-12-31 |
| PublicationDate_xml | – month: 12 year: 2019 text: 20191231 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Geem (ref_25) 2001; 76 Chen (ref_19) 2018; 34 Ftoutou (ref_5) 2012; 34 Delvecchio (ref_8) 2018; 99 Lee (ref_21) 2019; 83 Hinton (ref_28) 2006; 313 Yan (ref_14) 2018; 130 Zhang (ref_23) 2019; 75 ref_30 Wang (ref_10) 2019; 136 Mao (ref_2) 2018; 60 Srivastava (ref_27) 2014; 15 Ranzato (ref_16) 2007; 20 Liu (ref_18) 2018; 2018 Geem (ref_26) 2008; 199 Ahmad (ref_11) 2019; 143 Ning (ref_9) 2016; 75 Wang (ref_22) 2019; 7 Hinton (ref_15) 2006; 18 Yang (ref_12) 2017; 95 Witek (ref_4) 2016; 66 Meng (ref_20) 2018; 130 ref_24 ref_1 Hinton (ref_29) 2008; 9 ref_3 Muhammad (ref_17) 2017; 17 Flett (ref_6) 2016; 72 Moosavian (ref_13) 2017; 126 Li (ref_7) 2010; 24 |
| References_xml | – volume: 2018 start-page: 5105709 year: 2018 ident: ref_18 article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis publication-title: Math. Probl. Eng. – volume: 95 start-page: 158 year: 2017 ident: ref_12 article-title: Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine publication-title: Appl. Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.03.026 – volume: 143 start-page: 48 year: 2019 ident: ref_11 article-title: Fault detection of injectors in diesel engines using vibration time-frequency analysis publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.09.002 – volume: 313 start-page: 504 year: 2006 ident: ref_28 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 24 start-page: 193 year: 2010 ident: ref_7 article-title: EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.06.012 – ident: ref_24 – volume: 34 start-page: 566 year: 2012 ident: ref_5 article-title: Diesel engine valve clearance fault classification using multivariate analysis of variance and discriminant analysis publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331211408492 – volume: 76 start-page: 60 year: 2001 ident: ref_25 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 66 start-page: 154 year: 2016 ident: ref_4 article-title: Failure and thermo-mechanical stress analysis of the exhaust valve of diesel engine publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.04.022 – volume: 136 start-page: 625 year: 2019 ident: ref_10 article-title: Extraction of fault component from abnormal sound in diesel engines using acoustic signals publication-title: Measurement – volume: 7 start-page: 22554 year: 2019 ident: ref_22 article-title: Systematic development of a new variational autoencoder model based on uncertain data for monitoring nonlinear processes publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894764 – volume: 83 start-page: 13 year: 2019 ident: ref_21 article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.013 – volume: 20 start-page: 1185 year: 2007 ident: ref_16 article-title: Sparse feature learning for deep belief networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 1929 year: 2014 ident: ref_27 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 75 start-page: 544 year: 2016 ident: ref_9 article-title: Extraction of fault component from abnormal sound in diesel engines using acoustic signals publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.037 – ident: ref_1 doi: 10.3390/s17122916 – ident: ref_30 doi: 10.1109/SDPC.2019.00060 – volume: 34 start-page: 3443 year: 2018 ident: ref_19 article-title: Fault diagnosis method of rotating machinery based on stacked denoising autoencoder publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169524 – volume: 130 start-page: 448 year: 2018 ident: ref_20 article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2018.08.010 – volume: 75 start-page: 136 year: 2019 ident: ref_23 article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring publication-title: J. Process. Control. doi: 10.1016/j.jprocont.2019.01.008 – volume: 130 start-page: 435 year: 2018 ident: ref_14 article-title: A novel intelligent detection method for rolling bearing based on IVMD and instantaneous energy distribution-permutation entropy publication-title: Measurement doi: 10.1016/j.measurement.2018.08.038 – ident: ref_3 doi: 10.3390/s19112590 – volume: 199 start-page: 223 year: 2008 ident: ref_26 article-title: Novel derivative of harmony search algorithm for discrete design variables publication-title: Appl. Math. Comput. – volume: 18 start-page: 1527 year: 2006 ident: ref_15 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 99 start-page: 661 year: 2018 ident: ref_8 article-title: Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.033 – volume: 60 start-page: 418 year: 2018 ident: ref_2 article-title: Vibration-based fault diagnosis method for conrod small-end bearing knock in diesel engines publication-title: Insight doi: 10.1784/insi.2018.60.8.418 – volume: 72 start-page: 316 year: 2016 ident: ref_6 article-title: Fault detection and diagnosis of diesel engine valve trains publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.024 – volume: 9 start-page: 2579 year: 2008 ident: ref_29 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 126 start-page: 91 year: 2017 ident: ref_13 article-title: The effect of piston scratching fault on the vibration behavior of an IC engine publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.05.017 – volume: 17 start-page: 2876 year: 2017 ident: ref_17 article-title: A hybrid feature model and deep-learning-based bearing fault diagnosis publication-title: Sensors doi: 10.3390/s17122876 |
| SSID | ssj0023338 |
| Score | 2.416775 |
| Snippet | Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 223 |
| SubjectTerms | Algorithms autoencoder Decomposition deep learning diesel engine Diesel engines Fault diagnosis harmony search optimizer Optimization Principal components analysis Regularization methods Signal processing Vibration Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgxgM88A0rDBQQD7xUa5umaZ7QDXbaAzomNNDeqjRx4KSjvV17k-Cvx2l7ZYcmXnip1MZK3Tp2bMf6GeCNTFA660SotBFhiokjlUIMve8sExNL7Tp0_Y9yPs_Pz9XpkHBrhrLKrU3sDLWtjc-RH5Lr26FYiujd6iL0XaP86erQQuMm7HmksnQCe0fH89PPY8jFKQLr8YQ4BfeHTdJjqPGdXagD67_Ow_y7UPLKzjO7978834e7g8_Jpv0ieQA3sHoId64gET6C1ZR9pah5yAwyckFJuy2bbtraI11aXDOfsWUnek2T_mR9lTL7RAbnx-IXjZLvSzMsL5Gd-aYTbKY3y5Z96Av5Fg2rHd1gg0vWv_cxfJkdn70_CYdmDKGhCLoNM4cWrdVkACTXIi_jzObKyiTN0PsYcUSClaVyymnNS4xdJI2kC49TZ1DzJzCp6gr3gVkrLNdW5Ql6tBqXc99sIopLjkYkZRnA261wCjMglfuGGcuCIhYvx2KUYwCvR9JVD89xHdGRl_BI4BG1uwf1-lsxKGiR61TpKKVP0DZ1jqvM0OYtnTQiR-GiAA62Mi4GNW-KPwIO4NU4TArqT110hfWGaLgHWUxSIQJ42i-nkROyfxFFkEkAcmeh7bC6O1Itvncg4Bn9vkylz_7N1nO4TR6e6pEpD2DSrjf4Am6Zy3bRrF8O2vIbd6ohiQ priority: 102 providerName: ProQuest |
| Title | A Variational Stacked Autoencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of Diesel Engine |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31906062 https://www.proquest.com/docview/2550310950 https://www.proquest.com/docview/2334232455 https://pubmed.ncbi.nlm.nih.gov/PMC6982694 https://doaj.org/article/8a49a0477bad4ff396c8017f7c58e5f0 |
| Volume | 20 |
| WOSCitedRecordID | wos000510493100223&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxDeBpTKIA5doEzuO42MXWi0SWyq0oHKKHHssKpV01aQrwYHfzjhOoxatxIWLpWRGieOZsec51htC3kgG0lknYqWNiDNgDkMKIPa5s2Qmldp17Pof5WxWLBZqvlfqy58JC_TAYeBOCp0pnWRSVtpmznGVG5xUpZNGFCBch9Yx69mBqR5qcURegUeII6g_aVjgTuMHq09H0n9dZvn3Acm9FWd6n9zrU0U6Dl18QG5A_ZDc3SMQfEQux_Qrgt1-Q49i5ohBael42649QaWFDfUbrfRMb9DdftJwuJh-wnnix_IXSjFlxSesroBe-FoRdKq3q5a-D-fvlg1dO7yABlY0vPcx-TKdXLw7i_saCrFB4NvGuQML1mqMW8m1KKo0t4WykmU5-NQgTdAeslJOOa15BalLpJHY8DRzBjR_Qo7qdQ3PCLVWWK6tKhh4khlXcF8jIkkrDkawqorI293YlqYnGPd1LlYlAg1vhnIwQ0ReD6qXgVXjOqVTb6BBwRNhdzfQPcrePcp_uUdEjnfmLfvobEqEUR0jqkDxq0GMceV_luga1lvU4Z4bkWVCRORp8IahJzhtJQj8WETkgZ8cdPVQUi-_d9zdOQ5frrLn_-PbXpA7mL6pQDt5TI7azRZektvmql02mxG5KReya4sRuXU6mc0_j7ogwfb89wTvzT-cz7_9AfdIGMk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHRLjwPdHYIBBIHGJlsRJHB8QKoyq1brSQ0HbKTj-GJVKU5J2aPxR_I08J2lY0cRtBy6RElvOs_Pz83v2y-8BvGSBZkaZyOVCRm6oA4NTSmvX2s4skD4TpmLXH7LRKDk64uMt-LX-F8aGVa51YqWoVS7tHvkemr4Vi2XkvV18d23WKHu6uk6hUcPiQJ_9QJetfDPYx-_7Kgh6Hybv-26TVcCV6Aou3dhopZUSiGRGRZRkfqwSrlgQxtoulr6HErKMG26EoJn2jcckwwv1QyO1oNjuFdgOEexJB7bHg8PxceviUfT4av4iSrm3VwY1ZxvdWPWq5AAXWbR_B2aeW-l6N_-3MboFNxqbmnTrSXAbtvT8Dlw_x7R4FxZd8lkU02bnk6CJjdpLke5qmVsmT6ULYnekSV8U2IkzUkdhk4-oUL9Nf2Ip2vbYwuxUk4lNqkF6YjVbkv06UHFaktzgjS71jNTvvQefLqXL96Ezz-f6IRClIkWF4kmgLRuPSahNpuH5GdUyCrLMgddrMKSyYWK3CUFmKXpkFjdpixsHXrRVFzX9yEWV3llEtRUsY3j1IC9O0kYBpYkIufBC7IJQoTGUxxKNE2aYjBIdGc-B3TWm0kaNlekfQDnwvC1GBWRPlcRc5yusQy2JZBBGkQMPavi2kqB-99BDDhxgG8DeEHWzZD79WpGcxzh8MQ8f_VusZ3CtPzkcpsPB6OAx7KA1y2sWzl3oLIuVfgJX5elyWhZPm5lK4MtlA_83yk2ADg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tuwjBgfcjsIBBIHGJmthJHB8QKpRqq11KDwtaTsHxAyqVpiTtouWn8esYJ2nYohW3PXCJlNhK7OTz-Bt78g3AM04Nt9rGvpAq9iNDLQ4pY3zHnTlVIZe2Vtc_4ONxenQkJlvwa_0vjAurXNvE2lDrQrk18h5S31rFMg56tg2LmAyGrxbffZdByu20rtNpNBDZNyc_0H2rXo4G-K2fUzp8e_hmz28zDPgK3cKln1ijjdYSUc2ZjNM8THQqNKdRYtzEGQbYWp4LK6yULDehDbjieGBhZJWRDO97AXaQkkc4xnYmo3eTT527x9D7a7SMGBNBr6KNfhvbmAHrRAFnsdu_gzRPzXrDa__z-7oOV1uuTfrN4LgBW2Z-E66cUmC8BYs--SjLabsiSpB6o1XTpL9aFk7hU5uSuJVqsidL7MQJaaKzyXs0tN-mP7EUOT_eYXZsyKFLtkGGcjVbkkETwDitSGHxxFRmRprn3oYP59LlO7A9L-bmHhCtY82kFik1TqXHpswl2QjCnBkV0zz34MUaGJlqFdpdopBZhp6aw1DWYciDp13VRSNLclal1w5dXQWnJF5fKMovWWuYslRGQgYRdkHqyFomEoWkhVuu4tTENvBgd42vrDVvVfYHXB486YrRMLndJjk3xQrrMCcuSaM49uBuA-WuJWj3A_ScqQd8A-QbTd0smU-_1uLnCb6-RET3_92sx3AJ0Z4djMb7D-AyklzRiHPuwvayXJmHcFEdL6dV-agdtAQ-nzfufwMSSYjO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variational+Stacked+Autoencoder+with+Harmony+Search+Optimizer+for+Valve+Train+Fault+Diagnosis+of+Diesel+Engine&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Kun&rft.au=Mao%2C+Zhiwei&rft.au=Zhao%2C+Haipeng&rft.au=Jiang%2C+Zhinong&rft.date=2019-12-31&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=1&rft.spage=223&rft_id=info:doi/10.3390%2Fs20010223&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20010223 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |