A Variational Stacked Autoencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of Diesel Engine

Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 1; S. 223
Hauptverfasser: Chen, Kun, Mao, Zhiwei, Zhao, Haipeng, Jiang, Zhinong, Zhang, Jinjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 31.12.2019
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.
AbstractList Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.
Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis are constructed manually, which is very cumbersome because of the requirement for lots of expertise. To handle this issue, this paper proposed a variational stacked autoencoder (VSAE) to adaptively extract features from angular domain signals. As an unsupervised algorithm, VSAE can extract high-level features with the help of multiple encoding layers. Layer-wise pre-training and fine-tuning are introduced to get a better network initialization value. Moreover, the dropout technique and the batch normalization technique are carried out to prevent over-fitting and implement fast convergence. Finally, the harmony search optimizer (HSO) algorithm is introduced to get an appropriate hyper-parameter setting in the VSAE model, as well as make adaptive adjustment of the network structure. In order to verify the proposed method, the valve train fault data is collected on the diesel engine test rig under twelve operating conditions. The results indicate that the proposed scheme can effectively diagnose different degrees of intake valve fault, exhaust valve fault, and coupling fault under various operating conditions. Furthermore, the classification accuracy improved from 94.10% to 98.85%VSAE compared with stacked autoencoder (SAE) and some other traditional fault diagnosis algorithms.
Author Zhang, Jinjie
Zhao, Haipeng
Jiang, Zhinong
Chen, Kun
Mao, Zhiwei
AuthorAffiliation 1 Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China; chenkun_chn@163.com (K.C.); 2017400141@mail.buct.edu.cn (H.Z.)
2 Beijing Key Laboratory of High-End Mechanical Equipment Health Monitoring and Self-Recovery, Beijing University of Chemical Technology, Beijing 100029, China; jiangzn@mail.buct.edu.cn (Z.J.); zhangjinjie@mail.buct.edu.cn (J.Z.)
AuthorAffiliation_xml – name: 1 Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China; chenkun_chn@163.com (K.C.); 2017400141@mail.buct.edu.cn (H.Z.)
– name: 2 Beijing Key Laboratory of High-End Mechanical Equipment Health Monitoring and Self-Recovery, Beijing University of Chemical Technology, Beijing 100029, China; jiangzn@mail.buct.edu.cn (Z.J.); zhangjinjie@mail.buct.edu.cn (J.Z.)
Author_xml – sequence: 1
  givenname: Kun
  surname: Chen
  fullname: Chen, Kun
– sequence: 2
  givenname: Zhiwei
  orcidid: 0000-0001-5839-5066
  surname: Mao
  fullname: Mao, Zhiwei
– sequence: 3
  givenname: Haipeng
  surname: Zhao
  fullname: Zhao, Haipeng
– sequence: 4
  givenname: Zhinong
  surname: Jiang
  fullname: Jiang, Zhinong
– sequence: 5
  givenname: Jinjie
  surname: Zhang
  fullname: Zhang, Jinjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31906062$$D View this record in MEDLINE/PubMed
BookMark eNptkktPGzEQgFcVqDzaQ_9AZakXekjxax--VIooFCQkDtBerYl3nDjd2KntpaK_vobQCBAXv-bzpxnNHFQ7Pnisqg-MfhFC0ePEKWWUc_Gm2meSy0nHOd15ct6rDlJaUsqFEN3bak8wRRva8P1qPSU_ITrILngYyHUG8wt7Mh1zQG9Cj5H8cXlBziGugr8j1wjRLMjVOruV-1uiNsRiGG6R3ERwnpzBOGTyzcHch-QSCbZcMOFATv3ceXxX7VoYEr5_3A-rH2enNyfnk8ur7xcn08uJkY3Kk8Zij30PgvNWQN3NWNN3qm-5bJCXShk1rG1nyioLIGbILG1NWxbBpDUI4rC62Hj7AEu9jm4F8U4HcPrhIcS5hpidGVB3IBVQWXTQS2uFakxHWWtbU3dYW1pcXzeu9ThbYW_Q5wjDM-nziHcLPQ-3ulEdb5QsgqNHQQy_R0xZr1wyOAzgMYxJl75ILris64J-eoEuwxhLbwpV17QUrur7jD4-zWibyv_GFuDzBjAxpBTRbhFG9f3Q6O3QFPb4BWtcfpiIUowbXvnxDxBKwvk
CitedBy_id crossref_primary_10_3390_s22103884
crossref_primary_10_1016_j_measurement_2024_116216
crossref_primary_10_1088_1361_6501_abcefb
crossref_primary_10_1109_ACCESS_2021_3057399
crossref_primary_10_3390_s20071991
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1088_1361_6501_ad8cf6
crossref_primary_10_1016_j_knosys_2021_107142
crossref_primary_10_1088_1742_6596_1828_1_012040
crossref_primary_10_1038_s41598_023_47177_7
crossref_primary_10_1155_2022_1179192
crossref_primary_10_1177_14759217221113323
crossref_primary_10_3390_e24010036
crossref_primary_10_1080_01430750_2025_2508340
crossref_primary_10_3390_electronics11142249
crossref_primary_10_3390_electronics11131969
crossref_primary_10_3390_machines11050557
crossref_primary_10_1016_j_compag_2023_108556
crossref_primary_10_1088_1361_6501_ad3fd9
Cites_doi 10.1016/j.ymssp.2017.03.026
10.1016/j.apacoust.2018.09.002
10.1126/science.1127647
10.1016/j.ymssp.2009.06.012
10.1177/0142331211408492
10.1177/003754970107600201
10.1016/j.engfailanal.2016.04.022
10.1109/ACCESS.2019.2894764
10.1016/j.engappai.2019.04.013
10.1016/j.ymssp.2015.10.037
10.3390/s17122916
10.1109/SDPC.2019.00060
10.3233/JIFS-169524
10.1016/j.measurement.2018.08.010
10.1016/j.jprocont.2019.01.008
10.1016/j.measurement.2018.08.038
10.3390/s19112590
10.1162/neco.2006.18.7.1527
10.1016/j.ymssp.2017.06.033
10.1784/insi.2018.60.8.418
10.1016/j.ymssp.2015.10.024
10.1016/j.apacoust.2017.05.017
10.3390/s17122876
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20010223
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8a49a0477bad4ff396c8017f7c58e5f0
PMC6982694
31906062
10_3390_s20010223
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Plan of China
  grantid: Grant No. 2016YFF0203305
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: No. JD1912 and ZY1940
– fundername: Double First-rate Construction Special Funds
  grantid: No. ZD1601
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-6fededda32273a58b16d89d7246e222310c177b9f9faa3be1f07c7f07314fcea3
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510493100223&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:06:54 EDT 2025
Tue Nov 04 01:57:47 EST 2025
Fri Sep 05 14:08:16 EDT 2025
Tue Oct 07 06:56:01 EDT 2025
Mon Jul 21 06:03:18 EDT 2025
Tue Nov 18 21:39:48 EST 2025
Sat Nov 29 07:15:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
diesel engine
fault diagnosis
autoencoder
harmony search optimizer
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-6fededda32273a58b16d89d7246e222310c177b9f9faa3be1f07c7f07314fcea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This Paper is an Expanded Version of “Valve Fault Diagnosis of Internal Combustion Engine Based on An Improved Stacked Autoencoder” in the Proceedings of the SDPC 2019, Beijing, China, 15–17 August 2019.
ORCID 0000-0001-5839-5066
OpenAccessLink https://doaj.org/article/8a49a0477bad4ff396c8017f7c58e5f0
PMID 31906062
PQID 2550310950
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8a49a0477bad4ff396c8017f7c58e5f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6982694
proquest_miscellaneous_2334232455
proquest_journals_2550310950
pubmed_primary_31906062
crossref_primary_10_3390_s20010223
crossref_citationtrail_10_3390_s20010223
PublicationCentury 2000
PublicationDate 20191231
PublicationDateYYYYMMDD 2019-12-31
PublicationDate_xml – month: 12
  year: 2019
  text: 20191231
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Geem (ref_25) 2001; 76
Chen (ref_19) 2018; 34
Ftoutou (ref_5) 2012; 34
Delvecchio (ref_8) 2018; 99
Lee (ref_21) 2019; 83
Hinton (ref_28) 2006; 313
Yan (ref_14) 2018; 130
Zhang (ref_23) 2019; 75
ref_30
Wang (ref_10) 2019; 136
Mao (ref_2) 2018; 60
Srivastava (ref_27) 2014; 15
Ranzato (ref_16) 2007; 20
Liu (ref_18) 2018; 2018
Geem (ref_26) 2008; 199
Ahmad (ref_11) 2019; 143
Ning (ref_9) 2016; 75
Wang (ref_22) 2019; 7
Hinton (ref_15) 2006; 18
Yang (ref_12) 2017; 95
Witek (ref_4) 2016; 66
Meng (ref_20) 2018; 130
ref_24
ref_1
Hinton (ref_29) 2008; 9
ref_3
Muhammad (ref_17) 2017; 17
Flett (ref_6) 2016; 72
Moosavian (ref_13) 2017; 126
Li (ref_7) 2010; 24
References_xml – volume: 2018
  start-page: 5105709
  year: 2018
  ident: ref_18
  article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis
  publication-title: Math. Probl. Eng.
– volume: 95
  start-page: 158
  year: 2017
  ident: ref_12
  article-title: Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine
  publication-title: Appl. Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.026
– volume: 143
  start-page: 48
  year: 2019
  ident: ref_11
  article-title: Fault detection of injectors in diesel engines using vibration time-frequency analysis
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.09.002
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_28
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 24
  start-page: 193
  year: 2010
  ident: ref_7
  article-title: EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2009.06.012
– ident: ref_24
– volume: 34
  start-page: 566
  year: 2012
  ident: ref_5
  article-title: Diesel engine valve clearance fault classification using multivariate analysis of variance and discriminant analysis
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331211408492
– volume: 76
  start-page: 60
  year: 2001
  ident: ref_25
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 66
  start-page: 154
  year: 2016
  ident: ref_4
  article-title: Failure and thermo-mechanical stress analysis of the exhaust valve of diesel engine
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2016.04.022
– volume: 136
  start-page: 625
  year: 2019
  ident: ref_10
  article-title: Extraction of fault component from abnormal sound in diesel engines using acoustic signals
  publication-title: Measurement
– volume: 7
  start-page: 22554
  year: 2019
  ident: ref_22
  article-title: Systematic development of a new variational autoencoder model based on uncertain data for monitoring nonlinear processes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894764
– volume: 83
  start-page: 13
  year: 2019
  ident: ref_21
  article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.013
– volume: 20
  start-page: 1185
  year: 2007
  ident: ref_16
  article-title: Sparse feature learning for deep belief networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_27
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 75
  start-page: 544
  year: 2016
  ident: ref_9
  article-title: Extraction of fault component from abnormal sound in diesel engines using acoustic signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.037
– ident: ref_1
  doi: 10.3390/s17122916
– ident: ref_30
  doi: 10.1109/SDPC.2019.00060
– volume: 34
  start-page: 3443
  year: 2018
  ident: ref_19
  article-title: Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169524
– volume: 130
  start-page: 448
  year: 2018
  ident: ref_20
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.010
– volume: 75
  start-page: 136
  year: 2019
  ident: ref_23
  article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring
  publication-title: J. Process. Control.
  doi: 10.1016/j.jprocont.2019.01.008
– volume: 130
  start-page: 435
  year: 2018
  ident: ref_14
  article-title: A novel intelligent detection method for rolling bearing based on IVMD and instantaneous energy distribution-permutation entropy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.038
– ident: ref_3
  doi: 10.3390/s19112590
– volume: 199
  start-page: 223
  year: 2008
  ident: ref_26
  article-title: Novel derivative of harmony search algorithm for discrete design variables
  publication-title: Appl. Math. Comput.
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_15
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 99
  start-page: 661
  year: 2018
  ident: ref_8
  article-title: Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.033
– volume: 60
  start-page: 418
  year: 2018
  ident: ref_2
  article-title: Vibration-based fault diagnosis method for conrod small-end bearing knock in diesel engines
  publication-title: Insight
  doi: 10.1784/insi.2018.60.8.418
– volume: 72
  start-page: 316
  year: 2016
  ident: ref_6
  article-title: Fault detection and diagnosis of diesel engine valve trains
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.024
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_29
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 126
  start-page: 91
  year: 2017
  ident: ref_13
  article-title: The effect of piston scratching fault on the vibration behavior of an IC engine
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.05.017
– volume: 17
  start-page: 2876
  year: 2017
  ident: ref_17
  article-title: A hybrid feature model and deep-learning-based bearing fault diagnosis
  publication-title: Sensors
  doi: 10.3390/s17122876
SSID ssj0023338
Score 2.416775
Snippet Diesel engine fault diagnosis is vital due to enhanced reliability and economic efficiency requirements. The extracted features in traditional fault diagnosis...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 223
SubjectTerms Algorithms
autoencoder
Decomposition
deep learning
diesel engine
Diesel engines
Fault diagnosis
harmony search optimizer
Optimization
Principal components analysis
Regularization methods
Signal processing
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgxgM88A0rDBQQD7xUa5umaZ7QDXbaAzomNNDeqjRx4KSjvV17k-Cvx2l7ZYcmXnip1MZK3Tp2bMf6GeCNTFA660SotBFhiokjlUIMve8sExNL7Tp0_Y9yPs_Pz9XpkHBrhrLKrU3sDLWtjc-RH5Lr26FYiujd6iL0XaP86erQQuMm7HmksnQCe0fH89PPY8jFKQLr8YQ4BfeHTdJjqPGdXagD67_Ow_y7UPLKzjO7978834e7g8_Jpv0ieQA3sHoId64gET6C1ZR9pah5yAwyckFJuy2bbtraI11aXDOfsWUnek2T_mR9lTL7RAbnx-IXjZLvSzMsL5Gd-aYTbKY3y5Z96Av5Fg2rHd1gg0vWv_cxfJkdn70_CYdmDKGhCLoNM4cWrdVkACTXIi_jzObKyiTN0PsYcUSClaVyymnNS4xdJI2kC49TZ1DzJzCp6gr3gVkrLNdW5Ql6tBqXc99sIopLjkYkZRnA261wCjMglfuGGcuCIhYvx2KUYwCvR9JVD89xHdGRl_BI4BG1uwf1-lsxKGiR61TpKKVP0DZ1jqvM0OYtnTQiR-GiAA62Mi4GNW-KPwIO4NU4TArqT110hfWGaLgHWUxSIQJ42i-nkROyfxFFkEkAcmeh7bC6O1Itvncg4Bn9vkylz_7N1nO4TR6e6pEpD2DSrjf4Am6Zy3bRrF8O2vIbd6ohiQ
  priority: 102
  providerName: ProQuest
Title A Variational Stacked Autoencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of Diesel Engine
URI https://www.ncbi.nlm.nih.gov/pubmed/31906062
https://www.proquest.com/docview/2550310950
https://www.proquest.com/docview/2334232455
https://pubmed.ncbi.nlm.nih.gov/PMC6982694
https://doaj.org/article/8a49a0477bad4ff396c8017f7c58e5f0
Volume 20
WOSCitedRecordID wos000510493100223&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxDeBpTKIA5doEzuO42MXWi0SWyq0oHKKHHssKpV01aQrwYHfzjhOoxatxIWLpWRGieOZsec51htC3kgG0lknYqWNiDNgDkMKIPa5s2Qmldp17Pof5WxWLBZqvlfqy58JC_TAYeBOCp0pnWRSVtpmznGVG5xUpZNGFCBch9Yx69mBqR5qcURegUeII6g_aVjgTuMHq09H0n9dZvn3Acm9FWd6n9zrU0U6Dl18QG5A_ZDc3SMQfEQux_Qrgt1-Q49i5ohBael42649QaWFDfUbrfRMb9DdftJwuJh-wnnix_IXSjFlxSesroBe-FoRdKq3q5a-D-fvlg1dO7yABlY0vPcx-TKdXLw7i_saCrFB4NvGuQML1mqMW8m1KKo0t4WykmU5-NQgTdAeslJOOa15BalLpJHY8DRzBjR_Qo7qdQ3PCLVWWK6tKhh4khlXcF8jIkkrDkawqorI293YlqYnGPd1LlYlAg1vhnIwQ0ReD6qXgVXjOqVTb6BBwRNhdzfQPcrePcp_uUdEjnfmLfvobEqEUR0jqkDxq0GMceV_luga1lvU4Z4bkWVCRORp8IahJzhtJQj8WETkgZ8cdPVQUi-_d9zdOQ5frrLn_-PbXpA7mL6pQDt5TI7azRZektvmql02mxG5KReya4sRuXU6mc0_j7ogwfb89wTvzT-cz7_9AfdIGMk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHRLjwPdHYIBBIHGJlsRJHB8QKoyq1brSQ0HbKTj-GJVKU5J2aPxR_I08J2lY0cRtBy6RElvOs_Pz83v2y-8BvGSBZkaZyOVCRm6oA4NTSmvX2s4skD4TpmLXH7LRKDk64uMt-LX-F8aGVa51YqWoVS7tHvkemr4Vi2XkvV18d23WKHu6uk6hUcPiQJ_9QJetfDPYx-_7Kgh6Hybv-26TVcCV6Aou3dhopZUSiGRGRZRkfqwSrlgQxtoulr6HErKMG26EoJn2jcckwwv1QyO1oNjuFdgOEexJB7bHg8PxceviUfT4av4iSrm3VwY1ZxvdWPWq5AAXWbR_B2aeW-l6N_-3MboFNxqbmnTrSXAbtvT8Dlw_x7R4FxZd8lkU02bnk6CJjdpLke5qmVsmT6ULYnekSV8U2IkzUkdhk4-oUL9Nf2Ip2vbYwuxUk4lNqkF6YjVbkv06UHFaktzgjS71jNTvvQefLqXL96Ezz-f6IRClIkWF4kmgLRuPSahNpuH5GdUyCrLMgddrMKSyYWK3CUFmKXpkFjdpixsHXrRVFzX9yEWV3llEtRUsY3j1IC9O0kYBpYkIufBC7IJQoTGUxxKNE2aYjBIdGc-B3TWm0kaNlekfQDnwvC1GBWRPlcRc5yusQy2JZBBGkQMPavi2kqB-99BDDhxgG8DeEHWzZD79WpGcxzh8MQ8f_VusZ3CtPzkcpsPB6OAx7KA1y2sWzl3oLIuVfgJX5elyWhZPm5lK4MtlA_83yk2ADg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tuwjBgfcjsIBBIHGJmthJHB8QKpRqq11KDwtaTsHxAyqVpiTtouWn8esYJ2nYohW3PXCJlNhK7OTz-Bt78g3AM04Nt9rGvpAq9iNDLQ4pY3zHnTlVIZe2Vtc_4ONxenQkJlvwa_0vjAurXNvE2lDrQrk18h5S31rFMg56tg2LmAyGrxbffZdByu20rtNpNBDZNyc_0H2rXo4G-K2fUzp8e_hmz28zDPgK3cKln1ijjdYSUc2ZjNM8THQqNKdRYtzEGQbYWp4LK6yULDehDbjieGBhZJWRDO97AXaQkkc4xnYmo3eTT527x9D7a7SMGBNBr6KNfhvbmAHrRAFnsdu_gzRPzXrDa__z-7oOV1uuTfrN4LgBW2Z-E66cUmC8BYs--SjLabsiSpB6o1XTpL9aFk7hU5uSuJVqsidL7MQJaaKzyXs0tN-mP7EUOT_eYXZsyKFLtkGGcjVbkkETwDitSGHxxFRmRprn3oYP59LlO7A9L-bmHhCtY82kFik1TqXHpswl2QjCnBkV0zz34MUaGJlqFdpdopBZhp6aw1DWYciDp13VRSNLclal1w5dXQWnJF5fKMovWWuYslRGQgYRdkHqyFomEoWkhVuu4tTENvBgd42vrDVvVfYHXB486YrRMLndJjk3xQrrMCcuSaM49uBuA-WuJWj3A_ScqQd8A-QbTd0smU-_1uLnCb6-RET3_92sx3AJ0Z4djMb7D-AyklzRiHPuwvayXJmHcFEdL6dV-agdtAQ-nzfufwMSSYjO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variational+Stacked+Autoencoder+with+Harmony+Search+Optimizer+for+Valve+Train+Fault+Diagnosis+of+Diesel+Engine&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Kun&rft.au=Mao%2C+Zhiwei&rft.au=Zhao%2C+Haipeng&rft.au=Jiang%2C+Zhinong&rft.date=2019-12-31&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=1&rft.spage=223&rft_id=info:doi/10.3390%2Fs20010223&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20010223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon