Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement

In this paper, we propose a sequential variational autoencoder for video disentanglement, which is a representation learning method that can be used to separately extract static and dynamic features from videos. Building sequential variational autoencoders with a two-stream architecture induces indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 23; H. 5; S. 2515
Hauptverfasser: Haga, Takeshi, Kera, Hiroshi, Kawamoto, Kazuhiko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 24.02.2023
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!