A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults

The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 17; číslo 10; s. 2243
Hlavní autoři: Sun, Rui, Cheng, Qi, Wang, Guanyu, Ochieng, Washington
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 29.09.2017
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
AbstractList The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
Author Cheng, Qi
Wang, Guanyu
Ochieng, Washington
Sun, Rui
AuthorAffiliation 1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; qi_cheng@outlook.com (Q.C.); guanyu_wang@outlook.com (G.W.); w.ochieng@imperial.ac.uk (W.Y.O.)
2 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
AuthorAffiliation_xml – name: 2 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
– name: 1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; qi_cheng@outlook.com (Q.C.); guanyu_wang@outlook.com (G.W.); w.ochieng@imperial.ac.uk (W.Y.O.)
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0003-2252-9944
  surname: Sun
  fullname: Sun, Rui
– sequence: 2
  givenname: Qi
  surname: Cheng
  fullname: Cheng, Qi
– sequence: 3
  givenname: Guanyu
  surname: Wang
  fullname: Wang, Guanyu
– sequence: 4
  givenname: Washington
  surname: Ochieng
  fullname: Ochieng, Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28961219$$D View this record in MEDLINE/PubMed
BookMark eNptkktv3CAQgFGVqnn10D9QWeolObjhYWO4VFplkzZSlD3kcUUYg8OKhRTwSv33ZbPpKol6AjHffJph5hDs-eA1AF8Q_E4Ih2cJdQhi3JAP4AA1uKkZxnDv1X0fHKa0hBATQtgnsI8ZpwgjfgAWs-omrLWrFt5Zr6u5zLKeR7vWvpq5MUSbH1eVCbGa66xVtn6s7mcP1Y1c21FmG3x1q30q8Us5uZyOwUcjXdKfX84jcH95cXf-q75e_Lw6n13XqqE8140cTMcYhLTliLVM6oG3FPeMStJqRSTv6bAJdgoZwyUZNBpKKi0ttB0y5Ahcbb1DkEvxFO1Kxj8iSCueH0IchYzZKqcF7ikyEA6m4bRBkPZIEUIHVt5awwgqrh9b19PUr_SgtM9RujfStxFvH8UY1qKlXUdQUwQnL4IYfk86ZbGySWnnpNdhSgLxpi1TaDkv6Ld36DJM0ZevKhQtQtR1G-rr64p2pfybWwFOt4CKIaWozQ5BUGx2Qux2orBn71hl8_PoSjPW_SfjL2LZtSM
CitedBy_id crossref_primary_10_1134_S2075108720010046
crossref_primary_10_3390_s19040771
crossref_primary_10_1016_j_measurement_2024_116025
crossref_primary_10_1109_ACCESS_2020_2966876
crossref_primary_10_3390_s23041996
crossref_primary_10_1016_j_engappai_2023_106343
crossref_primary_10_1016_j_eswa_2024_123415
crossref_primary_10_1088_1361_6501_ad4578
crossref_primary_10_1109_ACCESS_2022_3186305
crossref_primary_10_1017_S0373463319000778
crossref_primary_10_1177_0278364920966642
crossref_primary_10_1007_s11431_022_2213_8
crossref_primary_10_1016_j_isatra_2022_01_014
crossref_primary_10_1016_j_ymssp_2024_111418
crossref_primary_10_1016_j_inffus_2020_06_003
crossref_primary_10_3390_electronics8111350
crossref_primary_10_3390_s21092922
crossref_primary_10_3390_s25051624
crossref_primary_10_1016_j_cose_2024_104073
crossref_primary_10_1177_0020294020920891
crossref_primary_10_3390_s22166286
crossref_primary_10_3390_s19122734
crossref_primary_10_1109_JSEN_2024_3451648
crossref_primary_10_3390_machines9090197
crossref_primary_10_3390_s24227140
crossref_primary_10_1016_j_paerosci_2020_100617
crossref_primary_10_3390_s19092147
crossref_primary_10_1049_rsn2_12488
crossref_primary_10_3390_s18071998
crossref_primary_10_1016_j_isatra_2023_02_026
crossref_primary_10_1109_JSEN_2022_3198727
crossref_primary_10_1016_j_ifacol_2022_07_200
crossref_primary_10_1109_TIM_2021_3077981
crossref_primary_10_3233_JIFS_191575
crossref_primary_10_3233_JIFS_211547
crossref_primary_10_1007_s13369_022_06686_9
crossref_primary_10_37394_23203_2025_20_22
crossref_primary_10_1109_ACCESS_2019_2913039
crossref_primary_10_1109_TIM_2022_3156997
crossref_primary_10_1109_ACCESS_2021_3128866
crossref_primary_10_1109_MAES_2021_3053108
crossref_primary_10_1016_j_robot_2022_104069
crossref_primary_10_1109_TII_2025_3552715
crossref_primary_10_3390_s22145313
crossref_primary_10_1109_ACCESS_2023_3314193
Cites_doi 10.1109/TIA.2016.2616398
10.3182/20050703-6-CZ-1902.01821
10.1016/j.isprsjprs.2014.02.013
10.1016/j.engappai.2013.09.018
10.1007/s10115-014-0754-y
10.1109/TVT.2016.2628054
10.1109/IDC.2007.374555
10.1109/21.256541
10.1109/ICRA.2013.6630618
10.1049/iet-rsn.2016.0427
10.1109/NAFIPS.2011.5751925
10.1017/S0373463307004237
10.1002/acs.967
10.1145/1541880.1541882
10.1109/ROBOT.2010.5509781
10.1016/j.aeue.2008.06.003
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s17102243
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2b61f00df4964106b1c336d8f005f831
PMC5677314
28961219
10_3390_s17102243
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c469t-4adf788006591858aed9562b86a35ec3a9b6d06597c1ff9a3de1dc466023571f3
IEDL.DBID PIMPY
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414931500085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:54 EDT 2025
Tue Nov 04 01:42:16 EST 2025
Tue Oct 21 07:28:34 EDT 2025
Tue Oct 07 07:02:57 EDT 2025
Wed Feb 19 02:41:33 EST 2025
Sat Nov 29 07:09:04 EST 2025
Tue Nov 18 22:36:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords online
adaptive neuron fuzzy inference system
data-driven
navigation sensor fault detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-4adf788006591858aed9562b86a35ec3a9b6d06597c1ff9a3de1dc466023571f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2252-9944
OpenAccessLink https://www.proquest.com/publiccontent/docview/1965671779?pq-origsite=%requestingapplication%
PMID 28961219
PQID 1965671779
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2b61f00df4964106b1c336d8f005f831
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677314
proquest_miscellaneous_1945220599
proquest_journals_1965671779
pubmed_primary_28961219
crossref_primary_10_3390_s17102243
crossref_citationtrail_10_3390_s17102243
PublicationCentury 2000
PublicationDate 20170929
PublicationDateYYYYMMDD 2017-09-29
PublicationDate_xml – month: 9
  year: 2017
  text: 20170929
  day: 29
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khalastchi (ref_4) 2015; 43
ref_13
Jang (ref_14) 1993; 23
ref_12
Bhatti (ref_3) 2007; 60
Jlassi (ref_6) 2017; 53
Yan (ref_8) 2010; 21
ref_10
Chandola (ref_2) 2009; 41
Khoukhi (ref_15) 2012; 45
Xiong (ref_18) 2005; 38
Colomina (ref_1) 2014; 92
Travemassuyes (ref_5) 2014; 27
ref_19
Okatan (ref_16) 2009; 63
ref_17
ref_9
Bu (ref_11) 2017; 11
Mao (ref_7) 2017; 66
References_xml – volume: 53
  start-page: 2894
  year: 2017
  ident: ref_6
  article-title: A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2616398
– volume: 38
  start-page: 113
  year: 2005
  ident: ref_18
  article-title: Unscented Kalman filter for fault detection
  publication-title: IFAC Proc.
  doi: 10.3182/20050703-6-CZ-1902.01821
– volume: 92
  start-page: 79
  year: 2014
  ident: ref_1
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 27
  start-page: 1
  year: 2014
  ident: ref_5
  article-title: Bridging control and artificial intelligence theories for diagnosis: A survey
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.09.018
– volume: 43
  start-page: 657
  year: 2015
  ident: ref_4
  article-title: Online data-driven anomaly detection in autonomous robots
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-014-0754-y
– volume: 66
  start-page: 4691
  year: 2017
  ident: ref_7
  article-title: Sensor fault detection for rail vehicle suspension systems with disturbances and stochastic noises
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2628054
– ident: ref_10
  doi: 10.1109/IDC.2007.374555
– volume: 23
  start-page: 665
  year: 1993
  ident: ref_14
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– ident: ref_9
  doi: 10.1109/ICRA.2013.6630618
– volume: 11
  start-page: 847
  year: 2017
  ident: ref_11
  article-title: Integrated method for the UAV navigation sensor anomaly detection
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2016.0427
– volume: 45
  start-page: 7
  year: 2012
  ident: ref_15
  article-title: Fault Detection and Classification Using Kalman Filter and Hybrid Neuro-Fuzzy Systems
  publication-title: Int. J. Comput. Appl. Technol.
– ident: ref_17
  doi: 10.1109/NAFIPS.2011.5751925
– volume: 60
  start-page: 327
  year: 2007
  ident: ref_3
  article-title: Failure modes and models for integrated GPS/INS systems
  publication-title: J. Navig.
  doi: 10.1017/S0373463307004237
– volume: 21
  start-page: 657
  year: 2010
  ident: ref_8
  article-title: Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.967
– ident: ref_13
– volume: 41
  start-page: 15
  year: 2009
  ident: ref_2
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– ident: ref_12
  doi: 10.1109/ROBOT.2010.5509781
– ident: ref_19
– volume: 63
  start-page: 762
  year: 2009
  ident: ref_16
  article-title: Fault detection in sensor information fusion Kalman filter
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2008.06.003
SSID ssj0023338
Score 2.5017104
Snippet The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’...
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs'...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2243
SubjectTerms adaptive neuron fuzzy inference system
Aircraft accidents & safety
Algorithms
data-driven
navigation sensor fault detection
online
Sensors
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMef0MQBDmiMX9kGMogDl2hJ7Mb2sVAqDqggwdBukX-FTSoJatP-_XvPSaMWTeKyq5-tOO_Z8fvKzscA77URQQinUiGCS4UOMtUu8DRMuM98JniwkTP7VS4W6upKf9-76ovOhPV44N5xF4Ut8zrLfC10KVC_2NxxXnqFZZNaxT-oi0zqnZgapBZH5dVzhDiK-ot1LiM6jR-sPhHSf1dm-e8Byb0VZ34MT4ZUkU37Lj6FB6E5gcd7AMFn8G3KFu02LFlPDGUz05l0tqIvGJsuf7eo_K__MMxL2SzQbgE2YpfTX2xhthGt0TbsB-pYtM_NZtmtn8Pl_PPPT1_S4YqE1KGu7VJhfI0ilhIJjSuvMsGj4CmsKg2fBMeNtqUno3R5XWvDfcg9Ni0j5iav-Qs4atomvAI2UVagGixwaFmhRabqQmqL6kjx0mI4E_iwc13lBn44XWOxrFBHkJer0csJvBur_u2hGXdV-kj-HysQ5zoWYPSrIfrV_6KfwPkuetUw-dYVQRJLlKlSJ_B2NOO0ob0Q04R2Q3UIJU9wmgRe9sEee4IalLhqaJEHw-Cgq4eW5uY6ornxuZLn4vQ-3u0MHhWUQ9AWmD6Ho261Ca_hodt2N-vVmzjebwFJCgLX
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults
URI https://www.ncbi.nlm.nih.gov/pubmed/28961219
https://www.proquest.com/docview/1965671779
https://www.proquest.com/docview/1945220599
https://pubmed.ncbi.nlm.nih.gov/PMC5677314
https://doaj.org/article/2b61f00df4964106b1c336d8f005f831
Volume 17
WOSCitedRecordID wos000414931500085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMefWMsBDvyGFUZlEAcuUZPYTewT6mgrkFiogKFyipzY2SaVZGvSHvnbeS9Jw4omTlxyyHMSR-_Zft_Y-RjgjdLCCpFKRwibOkLZ0FGp5Y4dc-MaV3Cb1JzZT2EUyeVSLdrfo8t2WeWuT6w76ob2TOu2sRMemSKlL-Yj4uAFqERC9e7yyqE9pGiutd1Q4wD6BN5ye9BffDxZ_OgEGEc91tCFOEr9UemFNVCN741JNbr_pnzz72WT18ah-f3_-wYP4F6bj7JJE0AP4ZbNH8Hda5TCx_B5wqJia1eswZKyqa60M11TN8kmqzO8aXX-k2Hyy6aWpiTwInY6-c4iva35HUXOvqJYRvtcb1ZV-QRO57Nv7z847T4MToriuXKENhkqZcpWFA7vUluDqspPZKD52KZcqyQwZAxTL8uU5sZ6Bi8NapaOl_Gn0MuL3B4CG8tEoOT0MX4ToYQrMz9UCUowyYMEY2YAb3eeiNMWUk57ZaxiFCvktLhz2gBed0UvGzLHTYWOyZ1dAYJp1yeK9Vncts3YTwIvc12TCRUIlMiJl3IeGInnxpnk3gCOdg6N2xZexn_8N4BXnRnbJk246NwWGypDvHoi4AzgWRM7XU1Q6BK8DS3hXlTtVXXfkl-c1_xvfG7IPfH839V6AXd8SkFoBk0dQa9ab-xLuJ1uq4tyPYSDcBnWRzmE_vEsWnwZ1t8j8HjyazZsm85vVN8ktg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0IFDAIJC5Rk9ibxAeEFpZVV92GlWircgqO47SVlqTsZhfxp_iNzORFF1XceuCasRM7_jz2l3G-AXgllTBC6NAWwmhbSBPYUhtumz5PndQR3CSVzuwkiKLw6EhON-BX-y8MHatsfWLlqNNC0zfybVK-85F7BPLd2XebskZRdLVNoVHDYtf8_IGUbfF2PMTxfe15o4_7H3bsJquArZEKlrZQaYa8j9ZeiYtVqEyKHMFLQl_xvtFcycRPyRhoN8uk4qlxU6zqV8owbsbxvldgUyDYnR5sTsd70y8dxePI-Gr9Is6ls71wg0qyja-telVygIt2tH8fzDy30o1u_W_v6DbcbPbUbFBPgjuwYfK7cOOc0uI9-DRgUbEyM1ZLq7KhKpU9nJOrZ4PZMXaiPPnGcAPPhobCKliJHQwOWaRWlQZJkbPPSPjRPlLLWbm4DweX0qMH0MuL3DwC1g8TgbTZwzmYCCmcMPMCmSCNDLmfIO4teNOOdawboXXK9zGLkXARLOIOFha87Iqe1eoiFxV6T4DpCpAgeHWhmB_HjX-JvcR3M8dJMyF9gTQ_cTXnfhritX4WcteCrRYyceOlFvEfvFjwojOjf6GgkcpNsaQypLlPKj4WPKzR2bUEyToJ0KElWMPtWlPXLfnpSaVhjs8NuCse_7tZz-Hazv7eJJ6Mo90ncN2jLRVFBOUW9Mr50jyFq3pVni7mz5qJyODrZeP6N6eVb4k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4P0IFDAIJC7RJrE3iQ8IbdmuqFqFFdCqt-A4TltpScomu4i_xq9jJi-6qOLWA9eMndjx5xl_sfMNwCuphBFCh7YQRttCmsCW2nDbjHjqpI7gJql1ZveDKAqPjuRsA351_8LQscrOJ9aOOi00fSMfkvKdj9wjkMOsPRYxm0zfnX23KYMU7bR26TQaiOyZnz-QvpVvdyc41q89b7rz5f0Hu80wYGukhZUtVJohB6Q4LDFwhcqkyBe8JPQVHxnNlUz8lIyBdrNMKp4aN8Wqfq0S42Yc73sFNgOOpGcAm9s70exTT_c4sr9Gy4hz6QxLN6jl2_haBKwTBVy0uv37kOa5qDe99T-_r9tws11rs3EzOe7Ahsnvwo1zCoz34OOYRcXKzFkjucomqlL2ZEEhgI3nx9iJ6uQbw4U9mxjabsFK7GB8yCK1qrVJipx9NnmJ9qlazqvyPhxcSo8ewCAvcvMI2ChMBNJpD-dmIqRwwswLZIL0MuR-gvPBgjfduMe6FWCnPCDzGIkYQSTuIWLBy77oWaM6clGhbQJPX4CEwusLxeI4bv1O7CW-mzlOmgnpC6T_ias599MQr42ykLsWbHXwiVvvVcZ_sGPBi96Mfoc2k1RuiiWVIS1-Uvex4GGD1L4lSOJJmA4twRqG15q6bslPT2ptc3xuwF3x-N_Neg7XEMzx_m609wSue7TSoo1CuQWDarE0T-GqXlWn5eJZOycZfL1sWP8Giuh4Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Online+Data-Driven+Algorithm+for+Detecting+UAV+Navigation+Sensor+Faults&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Rui&rft.au=Cheng%2C+Qi&rft.au=Wang%2C+Guanyu&rft.au=Ochieng%2C+Washington&rft.date=2017-09-29&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=10&rft.spage=2243&rft_id=info:doi/10.3390%2Fs17102243&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17102243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon