A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detec...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 17; číslo 10; s. 2243 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
29.09.2017
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate. |
|---|---|
| AbstractList | The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate. The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate. |
| Author | Cheng, Qi Wang, Guanyu Ochieng, Washington Sun, Rui |
| AuthorAffiliation | 1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; qi_cheng@outlook.com (Q.C.); guanyu_wang@outlook.com (G.W.); w.ochieng@imperial.ac.uk (W.Y.O.) 2 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK |
| AuthorAffiliation_xml | – name: 2 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK – name: 1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; qi_cheng@outlook.com (Q.C.); guanyu_wang@outlook.com (G.W.); w.ochieng@imperial.ac.uk (W.Y.O.) |
| Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0003-2252-9944 surname: Sun fullname: Sun, Rui – sequence: 2 givenname: Qi surname: Cheng fullname: Cheng, Qi – sequence: 3 givenname: Guanyu surname: Wang fullname: Wang, Guanyu – sequence: 4 givenname: Washington surname: Ochieng fullname: Ochieng, Washington |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28961219$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktv3CAQgFGVqnn10D9QWeolObjhYWO4VFplkzZSlD3kcUUYg8OKhRTwSv33ZbPpKol6AjHffJph5hDs-eA1AF8Q_E4Ih2cJdQhi3JAP4AA1uKkZxnDv1X0fHKa0hBATQtgnsI8ZpwgjfgAWs-omrLWrFt5Zr6u5zLKeR7vWvpq5MUSbH1eVCbGa66xVtn6s7mcP1Y1c21FmG3x1q30q8Us5uZyOwUcjXdKfX84jcH95cXf-q75e_Lw6n13XqqE8140cTMcYhLTliLVM6oG3FPeMStJqRSTv6bAJdgoZwyUZNBpKKi0ttB0y5Ahcbb1DkEvxFO1Kxj8iSCueH0IchYzZKqcF7ikyEA6m4bRBkPZIEUIHVt5awwgqrh9b19PUr_SgtM9RujfStxFvH8UY1qKlXUdQUwQnL4IYfk86ZbGySWnnpNdhSgLxpi1TaDkv6Ld36DJM0ZevKhQtQtR1G-rr64p2pfybWwFOt4CKIaWozQ5BUGx2Qux2orBn71hl8_PoSjPW_SfjL2LZtSM |
| CitedBy_id | crossref_primary_10_1134_S2075108720010046 crossref_primary_10_3390_s19040771 crossref_primary_10_1016_j_measurement_2024_116025 crossref_primary_10_1109_ACCESS_2020_2966876 crossref_primary_10_3390_s23041996 crossref_primary_10_1016_j_engappai_2023_106343 crossref_primary_10_1016_j_eswa_2024_123415 crossref_primary_10_1088_1361_6501_ad4578 crossref_primary_10_1109_ACCESS_2022_3186305 crossref_primary_10_1017_S0373463319000778 crossref_primary_10_1177_0278364920966642 crossref_primary_10_1007_s11431_022_2213_8 crossref_primary_10_1016_j_isatra_2022_01_014 crossref_primary_10_1016_j_ymssp_2024_111418 crossref_primary_10_1016_j_inffus_2020_06_003 crossref_primary_10_3390_electronics8111350 crossref_primary_10_3390_s21092922 crossref_primary_10_3390_s25051624 crossref_primary_10_1016_j_cose_2024_104073 crossref_primary_10_1177_0020294020920891 crossref_primary_10_3390_s22166286 crossref_primary_10_3390_s19122734 crossref_primary_10_1109_JSEN_2024_3451648 crossref_primary_10_3390_machines9090197 crossref_primary_10_3390_s24227140 crossref_primary_10_1016_j_paerosci_2020_100617 crossref_primary_10_3390_s19092147 crossref_primary_10_1049_rsn2_12488 crossref_primary_10_3390_s18071998 crossref_primary_10_1016_j_isatra_2023_02_026 crossref_primary_10_1109_JSEN_2022_3198727 crossref_primary_10_1016_j_ifacol_2022_07_200 crossref_primary_10_1109_TIM_2021_3077981 crossref_primary_10_3233_JIFS_191575 crossref_primary_10_3233_JIFS_211547 crossref_primary_10_1007_s13369_022_06686_9 crossref_primary_10_37394_23203_2025_20_22 crossref_primary_10_1109_ACCESS_2019_2913039 crossref_primary_10_1109_TIM_2022_3156997 crossref_primary_10_1109_ACCESS_2021_3128866 crossref_primary_10_1109_MAES_2021_3053108 crossref_primary_10_1016_j_robot_2022_104069 crossref_primary_10_1109_TII_2025_3552715 crossref_primary_10_3390_s22145313 crossref_primary_10_1109_ACCESS_2023_3314193 |
| Cites_doi | 10.1109/TIA.2016.2616398 10.3182/20050703-6-CZ-1902.01821 10.1016/j.isprsjprs.2014.02.013 10.1016/j.engappai.2013.09.018 10.1007/s10115-014-0754-y 10.1109/TVT.2016.2628054 10.1109/IDC.2007.374555 10.1109/21.256541 10.1109/ICRA.2013.6630618 10.1049/iet-rsn.2016.0427 10.1109/NAFIPS.2011.5751925 10.1017/S0373463307004237 10.1002/acs.967 10.1145/1541880.1541882 10.1109/ROBOT.2010.5509781 10.1016/j.aeue.2008.06.003 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
| Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s17102243 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2b61f00df4964106b1c336d8f005f831 PMC5677314 28961219 10_3390_s17102243 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-4adf788006591858aed9562b86a35ec3a9b6d06597c1ff9a3de1dc466023571f3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414931500085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:04:54 EDT 2025 Tue Nov 04 01:42:16 EST 2025 Tue Oct 21 07:28:34 EDT 2025 Tue Oct 07 07:02:57 EDT 2025 Wed Feb 19 02:41:33 EST 2025 Sat Nov 29 07:09:04 EST 2025 Tue Nov 18 22:36:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | online adaptive neuron fuzzy inference system data-driven navigation sensor fault detection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-4adf788006591858aed9562b86a35ec3a9b6d06597c1ff9a3de1dc466023571f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2252-9944 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/1965671779?pq-origsite=%requestingapplication% |
| PMID | 28961219 |
| PQID | 1965671779 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2b61f00df4964106b1c336d8f005f831 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677314 proquest_miscellaneous_1945220599 proquest_journals_1965671779 pubmed_primary_28961219 crossref_primary_10_3390_s17102243 crossref_citationtrail_10_3390_s17102243 |
| PublicationCentury | 2000 |
| PublicationDate | 20170929 |
| PublicationDateYYYYMMDD | 2017-09-29 |
| PublicationDate_xml | – month: 9 year: 2017 text: 20170929 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2017 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Khalastchi (ref_4) 2015; 43 ref_13 Jang (ref_14) 1993; 23 ref_12 Bhatti (ref_3) 2007; 60 Jlassi (ref_6) 2017; 53 Yan (ref_8) 2010; 21 ref_10 Chandola (ref_2) 2009; 41 Khoukhi (ref_15) 2012; 45 Xiong (ref_18) 2005; 38 Colomina (ref_1) 2014; 92 Travemassuyes (ref_5) 2014; 27 ref_19 Okatan (ref_16) 2009; 63 ref_17 ref_9 Bu (ref_11) 2017; 11 Mao (ref_7) 2017; 66 |
| References_xml | – volume: 53 start-page: 2894 year: 2017 ident: ref_6 article-title: A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2616398 – volume: 38 start-page: 113 year: 2005 ident: ref_18 article-title: Unscented Kalman filter for fault detection publication-title: IFAC Proc. doi: 10.3182/20050703-6-CZ-1902.01821 – volume: 92 start-page: 79 year: 2014 ident: ref_1 article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 27 start-page: 1 year: 2014 ident: ref_5 article-title: Bridging control and artificial intelligence theories for diagnosis: A survey publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.09.018 – volume: 43 start-page: 657 year: 2015 ident: ref_4 article-title: Online data-driven anomaly detection in autonomous robots publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-014-0754-y – volume: 66 start-page: 4691 year: 2017 ident: ref_7 article-title: Sensor fault detection for rail vehicle suspension systems with disturbances and stochastic noises publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2628054 – ident: ref_10 doi: 10.1109/IDC.2007.374555 – volume: 23 start-page: 665 year: 1993 ident: ref_14 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.256541 – ident: ref_9 doi: 10.1109/ICRA.2013.6630618 – volume: 11 start-page: 847 year: 2017 ident: ref_11 article-title: Integrated method for the UAV navigation sensor anomaly detection publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2016.0427 – volume: 45 start-page: 7 year: 2012 ident: ref_15 article-title: Fault Detection and Classification Using Kalman Filter and Hybrid Neuro-Fuzzy Systems publication-title: Int. J. Comput. Appl. Technol. – ident: ref_17 doi: 10.1109/NAFIPS.2011.5751925 – volume: 60 start-page: 327 year: 2007 ident: ref_3 article-title: Failure modes and models for integrated GPS/INS systems publication-title: J. Navig. doi: 10.1017/S0373463307004237 – volume: 21 start-page: 657 year: 2010 ident: ref_8 article-title: Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.967 – ident: ref_13 – volume: 41 start-page: 15 year: 2009 ident: ref_2 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – ident: ref_12 doi: 10.1109/ROBOT.2010.5509781 – ident: ref_19 – volume: 63 start-page: 762 year: 2009 ident: ref_16 article-title: Fault detection in sensor information fusion Kalman filter publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2008.06.003 |
| SSID | ssj0023338 |
| Score | 2.5017104 |
| Snippet | The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’... The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs'... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2243 |
| SubjectTerms | adaptive neuron fuzzy inference system Aircraft accidents & safety Algorithms data-driven navigation sensor fault detection online Sensors Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMef0MQBDmiMX9kGMogDl2hJ7Mb2sVAqDqggwdBukX-FTSoJatP-_XvPSaMWTeKyq5-tOO_Z8fvKzscA77URQQinUiGCS4UOMtUu8DRMuM98JniwkTP7VS4W6upKf9-76ovOhPV44N5xF4Ut8zrLfC10KVC_2NxxXnqFZZNaxT-oi0zqnZgapBZH5dVzhDiK-ot1LiM6jR-sPhHSf1dm-e8Byb0VZ34MT4ZUkU37Lj6FB6E5gcd7AMFn8G3KFu02LFlPDGUz05l0tqIvGJsuf7eo_K__MMxL2SzQbgE2YpfTX2xhthGt0TbsB-pYtM_NZtmtn8Pl_PPPT1_S4YqE1KGu7VJhfI0ilhIJjSuvMsGj4CmsKg2fBMeNtqUno3R5XWvDfcg9Ni0j5iav-Qs4atomvAI2UVagGixwaFmhRabqQmqL6kjx0mI4E_iwc13lBn44XWOxrFBHkJer0csJvBur_u2hGXdV-kj-HysQ5zoWYPSrIfrV_6KfwPkuetUw-dYVQRJLlKlSJ_B2NOO0ob0Q04R2Q3UIJU9wmgRe9sEee4IalLhqaJEHw-Cgq4eW5uY6ornxuZLn4vQ-3u0MHhWUQ9AWmD6Ho261Ca_hodt2N-vVmzjebwFJCgLX priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28961219 https://www.proquest.com/docview/1965671779 https://www.proquest.com/docview/1945220599 https://pubmed.ncbi.nlm.nih.gov/PMC5677314 https://doaj.org/article/2b61f00df4964106b1c336d8f005f831 |
| Volume | 17 |
| WOSCitedRecordID | wos000414931500085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMefWMsBDvyGFUZlEAcuUZPYTewT6mgrkFiogKFyipzY2SaVZGvSHvnbeS9Jw4omTlxyyHMSR-_Zft_Y-RjgjdLCCpFKRwibOkLZ0FGp5Y4dc-MaV3Cb1JzZT2EUyeVSLdrfo8t2WeWuT6w76ob2TOu2sRMemSKlL-Yj4uAFqERC9e7yyqE9pGiutd1Q4wD6BN5ye9BffDxZ_OgEGEc91tCFOEr9UemFNVCN741JNbr_pnzz72WT18ah-f3_-wYP4F6bj7JJE0AP4ZbNH8Hda5TCx_B5wqJia1eswZKyqa60M11TN8kmqzO8aXX-k2Hyy6aWpiTwInY6-c4iva35HUXOvqJYRvtcb1ZV-QRO57Nv7z847T4MToriuXKENhkqZcpWFA7vUluDqspPZKD52KZcqyQwZAxTL8uU5sZ6Bi8NapaOl_Gn0MuL3B4CG8tEoOT0MX4ToYQrMz9UCUowyYMEY2YAb3eeiNMWUk57ZaxiFCvktLhz2gBed0UvGzLHTYWOyZ1dAYJp1yeK9Vncts3YTwIvc12TCRUIlMiJl3IeGInnxpnk3gCOdg6N2xZexn_8N4BXnRnbJk246NwWGypDvHoi4AzgWRM7XU1Q6BK8DS3hXlTtVXXfkl-c1_xvfG7IPfH839V6AXd8SkFoBk0dQa9ab-xLuJ1uq4tyPYSDcBnWRzmE_vEsWnwZ1t8j8HjyazZsm85vVN8ktg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0IFDAIJC5Rk9ibxAeEFpZVV92GlWircgqO47SVlqTsZhfxp_iNzORFF1XceuCasRM7_jz2l3G-AXgllTBC6NAWwmhbSBPYUhtumz5PndQR3CSVzuwkiKLw6EhON-BX-y8MHatsfWLlqNNC0zfybVK-85F7BPLd2XebskZRdLVNoVHDYtf8_IGUbfF2PMTxfe15o4_7H3bsJquArZEKlrZQaYa8j9ZeiYtVqEyKHMFLQl_xvtFcycRPyRhoN8uk4qlxU6zqV8owbsbxvldgUyDYnR5sTsd70y8dxePI-Gr9Is6ls71wg0qyja-telVygIt2tH8fzDy30o1u_W_v6DbcbPbUbFBPgjuwYfK7cOOc0uI9-DRgUbEyM1ZLq7KhKpU9nJOrZ4PZMXaiPPnGcAPPhobCKliJHQwOWaRWlQZJkbPPSPjRPlLLWbm4DweX0qMH0MuL3DwC1g8TgbTZwzmYCCmcMPMCmSCNDLmfIO4teNOOdawboXXK9zGLkXARLOIOFha87Iqe1eoiFxV6T4DpCpAgeHWhmB_HjX-JvcR3M8dJMyF9gTQ_cTXnfhritX4WcteCrRYyceOlFvEfvFjwojOjf6GgkcpNsaQypLlPKj4WPKzR2bUEyToJ0KElWMPtWlPXLfnpSaVhjs8NuCse_7tZz-Hazv7eJJ6Mo90ncN2jLRVFBOUW9Mr50jyFq3pVni7mz5qJyODrZeP6N6eVb4k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4P0IFDAIJC7RJrE3iQ8IbdmuqFqFFdCqt-A4TltpScomu4i_xq9jJi-6qOLWA9eMndjx5xl_sfMNwCuphBFCh7YQRttCmsCW2nDbjHjqpI7gJql1ZveDKAqPjuRsA351_8LQscrOJ9aOOi00fSMfkvKdj9wjkMOsPRYxm0zfnX23KYMU7bR26TQaiOyZnz-QvpVvdyc41q89b7rz5f0Hu80wYGukhZUtVJohB6Q4LDFwhcqkyBe8JPQVHxnNlUz8lIyBdrNMKp4aN8Wqfq0S42Yc73sFNgOOpGcAm9s70exTT_c4sr9Gy4hz6QxLN6jl2_haBKwTBVy0uv37kOa5qDe99T-_r9tws11rs3EzOe7Ahsnvwo1zCoz34OOYRcXKzFkjucomqlL2ZEEhgI3nx9iJ6uQbw4U9mxjabsFK7GB8yCK1qrVJipx9NnmJ9qlazqvyPhxcSo8ewCAvcvMI2ChMBNJpD-dmIqRwwswLZIL0MuR-gvPBgjfduMe6FWCnPCDzGIkYQSTuIWLBy77oWaM6clGhbQJPX4CEwusLxeI4bv1O7CW-mzlOmgnpC6T_ias599MQr42ykLsWbHXwiVvvVcZ_sGPBi96Mfoc2k1RuiiWVIS1-Uvex4GGD1L4lSOJJmA4twRqG15q6bslPT2ptc3xuwF3x-N_Neg7XEMzx_m609wSue7TSoo1CuQWDarE0T-GqXlWn5eJZOycZfL1sWP8Giuh4Iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Online+Data-Driven+Algorithm+for+Detecting+UAV+Navigation+Sensor+Faults&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Rui&rft.au=Cheng%2C+Qi&rft.au=Wang%2C+Guanyu&rft.au=Ochieng%2C+Washington&rft.date=2017-09-29&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=10&rft.spage=2243&rft_id=info:doi/10.3390%2Fs17102243&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s17102243 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |