Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton–Raphson Corrections

Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Entropy (Basel, Switzerland) Ročník 23; číslo 1; s. 86
Hlavní autori: Walczyk, Cezary J., Moroz, Leonid V., Cieśliński, Jan L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 09.01.2021
MDPI
Predmet:
ISSN:1099-4300, 1099-4300
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton–Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs.
AbstractList Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton–Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs.
Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton-Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs.Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton-Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs.
Author Moroz, Leonid V.
Walczyk, Cezary J.
Cieśliński, Jan L.
AuthorAffiliation 2 Department of Security Information and Technology, Lviv Polytechnic National University, st. Kn. Romana 1/3, 79000 Lviv, Ukraine; moroz_lv@polynet.lviv.ua
1 Wydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, Poland; c.walczyk@uwb.edu.pl
AuthorAffiliation_xml – name: 1 Wydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, Poland; c.walczyk@uwb.edu.pl
– name: 2 Department of Security Information and Technology, Lviv Polytechnic National University, st. Kn. Romana 1/3, 79000 Lviv, Ukraine; moroz_lv@polynet.lviv.ua
Author_xml – sequence: 1
  givenname: Cezary J.
  orcidid: 0000-0003-2147-7222
  surname: Walczyk
  fullname: Walczyk, Cezary J.
– sequence: 2
  givenname: Leonid V.
  surname: Moroz
  fullname: Moroz, Leonid V.
– sequence: 3
  givenname: Jan L.
  orcidid: 0000-0003-1730-0950
  surname: Cieśliński
  fullname: Cieśliński, Jan L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33435352$$D View this record in MEDLINE/PubMed
BookMark eNplks1uEzEQgFeoiP7AgRdAK3GBQ6i9_ln7glRFFCIVkAqcjdeeTRxt7NT2BuXGO_CGPAlO01ZtOdkef_Np7Jnj6sAHD1X1EqN3hEh0Cg1BGCHBn1RHGEk5oQShg3v7w-o4pSVCDWkwf1YdEkIJI6w5qn7OVusYNs7P67yA-syYMWqzrUN_fT7XKdczv4GYoP52NeoI9WUIue629edgXb_dZX6BXzn4v7__XOr1IgVfT0OMYLILPj2vnvZ6SPDiZj2pfpx_-D79NLn4-nE2PbuYGMplnuBW8g4AhLCoZZyRpuspcMMx7gUlQK2h0sreSCoLagSj0IvO6gYTIaUlJ9Vs77VBL9U6upWOWxW0U9eBEOdKx-zMAIpobhprG8s7QxFj0jDTEUQI07wXAorr_d61HrsVWAM-Rz08kD688W6h5mGjWtG0hKIieHMjiOFqhJTVyiUDw6A9hDGphrZteQdnuKCvH6HLMEZfvmpPUc6pKNSr-xXdlXLbyAKc7gETQ0oRemVc1rsOlALdoDBSu1FRd6NSMt4-yriV_s_-A5gsvkI
CitedBy_id crossref_primary_10_3390_electronics11152285
crossref_primary_10_1007_s11075_024_01932_7
crossref_primary_10_3390_computation9020021
crossref_primary_10_3390_electronics13152955
crossref_primary_10_3390_en14041058
crossref_primary_10_1109_JIOT_2021_3116536
crossref_primary_10_3390_s22207989
crossref_primary_10_1145_3708472
Cites_doi 10.1016/j.jocs.2019.07.004
10.1088/1742-6596/513/2/022015
10.1016/j.amc.2017.08.025
10.1109/TBCAS.2014.2376956
10.1109/TC.2012.82
10.1088/1742-6596/513/5/052027
10.20944/preprints201908.0045.v1
10.1016/B978-155860798-9/50011-7
10.1007/978-3-319-76526-6
10.1109/ISCE.2015.7177775
10.1109/VLSID.2017.60
10.1109/MSP.2018.2875977
10.1201/b17296
10.1109/DEVIC.2017.8073975
10.1109/40.755466
10.1007/s10470-013-0128-5
10.1109/ICASSP.2013.6638148
10.1137/19M1257780
10.1109/38.595279
10.1088/1742-6596/898/3/032044
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e23010086
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_3a6c2dd2d6bc40559c5cb30335a6f88e
PMC7827340
33435352
10_3390_e23010086
Genre Journal Article
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-1796beee88d0756532bf4e6c611f843e4dc49d9fc949796c854ef8bda213899d3
IEDL.DBID PIMPY
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610134300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:44:48 EDT 2025
Tue Nov 04 01:58:47 EST 2025
Wed Oct 01 13:15:38 EDT 2025
Fri Jul 25 11:56:21 EDT 2025
Thu Jan 02 22:58:02 EST 2025
Sat Nov 29 07:11:49 EST 2025
Tue Nov 18 21:55:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magic constant
floating-point arithmetic
approximation of functions
inverse square root
Newton–Raphson method
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-1796beee88d0756532bf4e6c611f843e4dc49d9fc949796c854ef8bda213899d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1730-0950
0000-0003-2147-7222
OpenAccessLink https://www.proquest.com/publiccontent/docview/2477446648?pq-origsite=%requestingapplication%
PMID 33435352
PQID 2477446648
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_3a6c2dd2d6bc40559c5cb30335a6f88e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827340
proquest_miscellaneous_2477497651
proquest_journals_2477446648
pubmed_primary_33435352
crossref_citationtrail_10_3390_e23010086
crossref_primary_10_3390_e23010086
PublicationCentury 2000
PublicationDate 20210109
PublicationDateYYYYMMDD 2021-01-09
PublicationDate_xml – month: 1
  year: 2021
  text: 20210109
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Moroz (ref_31) 2018; 316
ref_14
ref_10
ref_32
ref_30
ref_19
ref_17
ref_16
Stine (ref_21) 1999; 11
Blinn (ref_22) 1997; 17
ref_15
Hsieh (ref_28) 2016; 10
Blanchard (ref_6) 2020; 42
Graillat (ref_33) 2019; 36
ref_25
ref_24
ref_23
Oberman (ref_18) 1999; 19
Liu (ref_8) 2012; 61
ref_20
ref_1
Piparo (ref_12) 2014; 513
ref_3
ref_2
ref_29
Janhunen (ref_26) 2014; 78
ref_27
Moroz (ref_7) 2019; 36
ref_9
ref_5
ref_4
Faerber (ref_13) 2017; 898
Ivanchenko (ref_11) 2014; 513
References_xml – volume: 36
  start-page: 101017
  year: 2019
  ident: ref_33
  article-title: Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2019.07.004
– ident: ref_5
– volume: 513
  start-page: 022015
  year: 2014
  ident: ref_11
  article-title: Geant4 Electromagnetic Physics for LHC Upgrade
  publication-title: J. Phys. Conf. Seriies
  doi: 10.1088/1742-6596/513/2/022015
– ident: ref_24
– volume: 316
  start-page: 245
  year: 2018
  ident: ref_31
  article-title: Fast calculation of inverse square root with the use of magic constant – analytical approach
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.08.025
– volume: 10
  start-page: 219
  year: 2016
  ident: ref_28
  article-title: A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2014.2376956
– volume: 61
  start-page: 1059
  year: 2012
  ident: ref_8
  article-title: Power Efficient Division and Square root Unit
  publication-title: IEEE Trans. Comp.
  doi: 10.1109/TC.2012.82
– volume: 513
  start-page: 052027
  year: 2014
  ident: ref_12
  article-title: Speeding up HEP experiment software with a library of fast and auto-vectorisable mathematical functions
  publication-title: J. Phys. Conf. Seriies
  doi: 10.1088/1742-6596/513/5/052027
– ident: ref_32
  doi: 10.20944/preprints201908.0045.v1
– ident: ref_16
– ident: ref_1
  doi: 10.1016/B978-155860798-9/50011-7
– ident: ref_3
  doi: 10.1007/978-3-319-76526-6
– ident: ref_14
– ident: ref_23
– ident: ref_27
  doi: 10.1109/ISCE.2015.7177775
– ident: ref_29
  doi: 10.1109/VLSID.2017.60
– volume: 36
  start-page: 159
  year: 2019
  ident: ref_7
  article-title: Efficient floating-point division for digital signal processing application
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2875977
– ident: ref_25
– ident: ref_4
  doi: 10.1201/b17296
– ident: ref_2
– ident: ref_30
  doi: 10.1109/DEVIC.2017.8073975
– ident: ref_10
– volume: 19
  start-page: 37
  year: 1999
  ident: ref_18
  article-title: AMD 3DNow! technology: Architecture and implementations
  publication-title: IEEE Micro
  doi: 10.1109/40.755466
– volume: 11
  start-page: 1
  year: 1999
  ident: ref_21
  article-title: The symmetric table addition method for accurate function approximation
  publication-title: J. VLSI Signal Process.
– volume: 78
  start-page: 645
  year: 2014
  ident: ref_26
  article-title: Novel detector implementations for 3G LTE downlink and uplink
  publication-title: Analog. Integr. Circ. Sig. Process.
  doi: 10.1007/s10470-013-0128-5
– ident: ref_15
– ident: ref_9
  doi: 10.1109/ICASSP.2013.6638148
– volume: 42
  start-page: A1541
  year: 2020
  ident: ref_6
  article-title: A class of fast and accurate summation algorithms
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1257780
– ident: ref_17
– ident: ref_19
– volume: 17
  start-page: 80
  year: 1997
  ident: ref_22
  article-title: Floating-point tricks
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.595279
– ident: ref_20
– volume: 898
  start-page: 032044
  year: 2017
  ident: ref_13
  article-title: Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute platform for the particle identification in the LHCb Upgrade
  publication-title: J. Phys. Conf. Seriies
  doi: 10.1088/1742-6596/898/3/032044
SSID ssj0023216
Score 2.3270285
Snippet Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 86
SubjectTerms Accuracy
Algorithms
Approximation
approximation of functions
Computer graphics
Field programmable gate arrays
Floating point arithmetic
inverse square root
Libraries
magic constant
Mathematical analysis
Mathematical functions
Newton-Raphson method
Storage capacity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6higMXBOIvUCqDOHCJmtiO1z62FSsOUKECUm_BHtvqSihpN1mk3ngH3pAnYZxkoy6qxIVbkpmDMzO2v_HPNwBvjFdckiyP0tp0JafInYkhlxQ7OmgjCxyqlnxYnJ7q83Pz6Uapr3QmbKQHHg13KKxC7j33yiGBi8pghY7GXVFZFbUOafQtFmabTE2pluClGnmEBCX1h4GAdmKxUTuzz0DSfxuy_PuA5I0ZZ_kA7k9QkR2NTXwId0LzCL7NqwCMoBs7QtysLV6zNg7vS9v1LHFnrLvAPl-R_wM7a9ueuWv2sfWr4VYTo5GNIN_vn7_O7OUFAW52kmp0DDccusfwdfnuy8n7fKqSkCOltn3iF1UuhKC1p-lfVYK7KINCVZZRSxGkR2m8iWikIVXUlQxRO2952qM0XjyBvaZtwjNgWFjULhquNMESTY-E52KplKmEs4pn8HZrvRonCvFUyeJ7TalEMnQ9GzqD17Pq5cibcZvScXLBrJCorocPFAD1FAD1vwIgg_2tA-up_3U1lwRrE3O-zuDVLKaek7ZDbBPazaRDaKwqM3g6-ntuiRAEIwmbZrDYiYSdpu5KmtXFwM5NkGshZPH8f_zbC7jH0xmatORj9mGvX2_CS7iLP_pVtz4YQv4P-toI9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton–Raphson Corrections
URI https://www.ncbi.nlm.nih.gov/pubmed/33435352
https://www.proquest.com/docview/2477446648
https://www.proquest.com/docview/2477497651
https://pubmed.ncbi.nlm.nih.gov/PMC7827340
https://doaj.org/article/3a6c2dd2d6bc40559c5cb30335a6f88e
Volume 23
WOSCitedRecordID wos000610134300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB6xLQcu_Ii_LEtlEAcuUdvYce0T2l21Aomtqi5I5RQc22EroabbpCvtBfEOvCFPwkySBopWnLhETT0HRzMefzMefwPwSjsZCRwLM2EMXckZhKnOfCjQdpRXWgxs1bXk_Wg6VYuFnjXXo4umrHLnEytHXbM9U902OuG-yy1lzPuRQNhCzOjqzfoypB5SdNbaNNQ4gC4Rbw060J29O5t9agMwHg1lzS7EMdTve4TfxG0j9_akirr_Jrz5d9nkH_vQ5N7__YL7cLfBo-y4NqAHcMuvHsLnNtXAEB-yY2u3G2OvWZ5V7xNTlIwIOjaFZ-eXaGSezfO8ZOk1O8vdsro6xdB9Iq78-f3H3KwvENWzU2oEUl2jKB7Bx8n4w-nbsGnFEFqMn0siMZWp914phxhDxjxKM-GllcNhpgT3wlmhnc6sFhpFrYqFz1TqTEQHodrxx9BZ5Sv_FJgdGKvSTEdSIfZR-BNBYzaUUsc8NTIK4PVOGYlteMqpXcbXBOMV0lvS6i2Al63ouibnuEnohDTaChCfdvVHvvmSNMsz4UbayLnIydQihI21jW2KuzuPjcyU8gEc7XSaNIu8SH6rMIAX7TAuTzpzMSufbxsZhHzxMIAntfm0M-EcsSoC4ABGe4a1N9X9kdXyoqIAR1w34mJw-O9pPYM7EZXgUMZIH0Gn3Gz9c7htr8plsenBwWihetA9GU9n816VjOhR6es5Pb-Ne83q-QWeEClF
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aHRLc8CP-AgMMAombaKntuPYFQmNQrVpbVWNI4yo4tsMqoaZrUlDveAfeg4fiSThOk0DRxN0uuEvio8iJPx9_xz_fAXimrKAcy8KMa-2P5ERhqjIXcsSOdFLxyFRZS4a98VienKjJFvxozsL4bZWNT6wctc2NnyPfpRyJitdCl6_mZ6HPGuVXV5sUGmtYHLrVVwzZipeDN9i-zyntvz3ePwjrrAKhwVCw9HqcInXOSWlxuBQxo2nGnTCi280kZ45bw5VVmVFcoamRMXeZTK2mfk1PWYbvvQTbHMEedWB7MhhNPrQhHqNdsdYvYkxFuw4JvlfPERujXpUc4DxG-_fGzD9Guv71_-0f3YBrNacme-tOcBO23OwWfGynSwhyXLJnzHKhzYrkWXXf10VJvMjIonDk3Rl2FEeO8rwk6YqMcjutjn8RHAKQG__89v1Iz08xMiH7PplJdRSkuA3vL-Sj7kBnls_cPSAm0kammaJCIn-TeInEN-sKoWKWakEDeNE0d2JqrXWf8uNzgjGXR0bSIiOAp63pfC0wcp7Ra4-Z1sBrglcP8sWnpHYxCdPCUGupFalBGh4rE5sUGQqLtcikdAHsNKhJakdVJL8hE8CTthhdjF830jOXL2sbpK1xN4C7a4C2NWEM-TaS-AB6G9DdqOpmyWx6WsmYIzftMR7d_3e1HsOVg-PRMBkOxocP4Cr1W4r8DJjagU65WLqHcNl8KafF4lHdFwkC7IKh_QseOHUG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgix4SFeGQYwCCQ2UVPbce0FQvOqGM1QVQWk2WUcP5hKo6bTtKDu-Af-hs_hS7hO00DRiN0s2CXxVeTEx9fn-nEuwEtlBeVYFnuudTiSk8S58i7miB3ppOKJqbKWHHf7fXlyogYb8GN1FiZsq1z5xMpR28KEOfI25UhUgha6bPt6W8Rgv_d2chGHDFJhpXWVTmMJkSO3-IrhW_nmcB_b-hWlvYOPe-_iOsNAbDAsnAVtTpE756S0OHSKlNHccyeM6HS85Mxxa7iyyhvFFZoamXLnZW41Det7yjJ87zXY7DIMelqwuXvQHwybcI_RjlhqGTGmkrZDsh-UdMTaCFglCriM3f69SfOPUa93-3_-X3fgVs21yc6yc9yFDTe-B6fNNApB7kt2jJlPtVmQwlf3PV3OSBAfmZaOfLjADuTIsChmJF-Q94UdVcfCCA4NyJl_fvs-1JMzjFjIXkhyUh0RKe_Dpyv5qAfQGhdj9wiISbSRuVdUSOR1Ei-REPuOECpluRY0gterps9MrcEeUoGcZxiLBZRkDUoieNGYTpbCI5cZ7Qb8NAZBK7x6UEw_Z7XryZgWhlpLrcgN0vNUmdTkyFxYqoWX0kWwvUJQVjuwMvsNnwieN8XoesJ6kh67Yl7bIJ1NOxE8XIK1qQljyMOR3EfQXYPxWlXXS8ajs0reHDlrl_Fk69_VegY3EM_Z8WH_6DHcpGGnUZgYU9vQmk3n7glcN19mo3L6tO6WBPF1xcj-BRSWfaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Accuracy+of+the+Fast+Inverse+Square+Root+by+Modifying+Newton%E2%80%93Raphson+Corrections&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Walczyk%2C+Cezary+J.&rft.au=Moroz%2C+Leonid+V.&rft.au=Cie%C5%9Bli%C5%84ski%2C+Jan+L.&rft.date=2021-01-09&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fe23010086&rft_id=info%3Apmid%2F33435352&rft.externalDocID=PMC7827340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon