Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton–Raphson Corrections
Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-...
Gespeichert in:
| Veröffentlicht in: | Entropy (Basel, Switzerland) Jg. 23; H. 1; S. 86 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
09.01.2021
MDPI |
| Schlagworte: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton–Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1099-4300 1099-4300 |
| DOI: | 10.3390/e23010086 |