Structural Basis for Inhibition of the SARS‐CoV‐2 nsp16 by Substrate‐Based Dual Site Inhibitors
Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of s...
Uloženo v:
| Vydáno v: | ChemMedChem Ročník 19; číslo 24; s. e202400618 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
16.12.2024
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 1860-7179, 1860-7187, 1860-7187 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential.
Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential. |
|---|---|
| AbstractList | Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential. Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential. |
| Author | Rudusa, Laura Bula, Anna L. Tars, Kaspars Jaudzems, Kristaps Bobrovs, Raitis Jirgensons, Aigars Zelencova‐Gopejenko, Diana Kalnins, Gints Sisovs, Mihails Bobileva, Olga |
| AuthorAffiliation | 1 Latvian Biomedical Research and Study Centre Ratsupites 1 k-1 LV1067 Riga Latvia 2 Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia 3 University of Latvia Jelgavas 1 LV1004 Riga Latvia |
| AuthorAffiliation_xml | – name: 2 Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia – name: 1 Latvian Biomedical Research and Study Centre Ratsupites 1 k-1 LV1067 Riga Latvia – name: 3 University of Latvia Jelgavas 1 LV1004 Riga Latvia |
| Author_xml | – sequence: 1 givenname: Gints surname: Kalnins fullname: Kalnins, Gints organization: Latvian Biomedical Research and Study Centre – sequence: 2 givenname: Laura surname: Rudusa fullname: Rudusa, Laura organization: Latvian Institute of Organic Synthesis – sequence: 3 givenname: Anna L. surname: Bula fullname: Bula, Anna L. organization: Latvian Institute of Organic Synthesis – sequence: 4 givenname: Diana surname: Zelencova‐Gopejenko fullname: Zelencova‐Gopejenko, Diana organization: Latvian Institute of Organic Synthesis – sequence: 5 givenname: Olga surname: Bobileva fullname: Bobileva, Olga organization: Latvian Institute of Organic Synthesis – sequence: 6 givenname: Mihails surname: Sisovs fullname: Sisovs, Mihails organization: Latvian Biomedical Research and Study Centre – sequence: 7 givenname: Kaspars surname: Tars fullname: Tars, Kaspars organization: University of Latvia – sequence: 8 givenname: Aigars surname: Jirgensons fullname: Jirgensons, Aigars organization: Latvian Institute of Organic Synthesis – sequence: 9 givenname: Kristaps surname: Jaudzems fullname: Jaudzems, Kristaps organization: University of Latvia – sequence: 10 givenname: Raitis orcidid: 0000-0002-0221-8658 surname: Bobrovs fullname: Bobrovs, Raitis email: raitis.bobrovs@osi.lv organization: Latvian Institute of Organic Synthesis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39258386$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsNmBv_GzgqVFNpKrZAIsLUc54ZxlYmndgKaHY_AM_IkeDSdoVRCbGzLPufT8T3H6GAIAyD0nJI5JYS9dsvWzRlhgpCC6kfoiOqCzBTV6mB_VuUhOk7phhAhNNVP0CEvmdRcF0cI6jFObpyi7fFbm3zCXYj4clj4xo8-DDh0eFwArk8_1r9-_KzCl7wyPKQVLXCzxvXUpDHaEfJ19kOLz6aMqv0IO0qI6Sl63Nk-wbO7_QR9fv_uU3Uxu_pwflmdXs2cKEo9s0yXjaKCKwXStiXnSgqpbNdCI4UlgnEoWQm0aGXBJXcKgDAuVUvartOCn6A3W-5qapbQOhhytt6sol_auDbBevP3y-AX5mv4ZigthM6zyYRXd4QYbidIo1n65KDv7QBhSoZTwrQmmtEsfflAehOmOOT_ZZWQVAlWbIAv7kfaZ9lVkAViK3AxpBShM86PdjP7nND3hhKzadpsmjb7prNt_sC2I__TUG4N330P6_-oTXV9Vv3x_gb4gb0B |
| CitedBy_id | crossref_primary_10_34133_bmr_0229 |
| Cites_doi | 10.1021/acsmedchemlett.2c00265 10.1007/s12250-016-3726-4 10.1021/acsinfecdis.3c00203 10.1128/JVI.00407-08 10.1038/s41564-020-0695-z 10.1016/j.ejmech.2020.112557 10.1038/s41467-021-23594-y 10.3390/ph14121243 10.1021/acsmedchemlett.1c00140 10.1073/pnas.2100170118 10.1038/s41392-020-00241-4 10.1021/acs.jmedchem.2c00120 10.1002/pro.4395 10.1016/j.bbagen.2023.130319 10.1038/s41467-019-13796-w 10.1021/acsomega.3c02815 10.1016/j.ejmech.2023.115474 10.1126/scisignal.abe1202 10.3390/molecules28020768 10.1126/scisignal.abh2071 10.1038/s41467-020-17495-9 10.1038/nature09489 10.3390/molecules28030988 10.1021/acsinfecdis.1c00131 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH – notice: 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/cmdc.202400618 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1860-7187 |
| EndPage | n/a |
| ExternalDocumentID | PMC11648818 39258386 10_1002_cmdc_202400618 CMDC202400618 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: DIAMOND Light Source funderid: mx35587 – fundername: “State research project in the field of biomedicine, medical technologies and pharmacy” funderid: VPP-EM-BIOMEDICĪNA-2022/1-0001 – fundername: Ministry of Economics of the Republic of Latvia – fundername: HZB BESSY II funderid: MX-222-00329-ST – fundername: "State research project in the field of biomedicine, medical technologies and pharmacy" grantid: VPP-EM-BIOMEDICĪNA-2022/1-0001 – fundername: HZB BESSY II grantid: MX-222-00329-ST – fundername: DIAMOND Light Source grantid: mx35587 – fundername: “State research project in the field of biomedicine, medical technologies and pharmacy” grantid: VPP-EM-BIOMEDICĪNA-2022/1-0001 |
| GroupedDBID | --- 05W 0R~ 1L6 1OC 24P 29B 33P 3WU 4.4 53G 5GY 66C 6J9 77Q 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HBH HGLYW HHZ HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O9- OIG P2W P4E PQQKQ ROL RWI SUPJJ W99 WBKPD WOHZO WXSBR WYJ XV2 YZZ ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4698-a289b714377e5ad93375457afdeb54a0423e929e16d56353c7ee02357d0dff843 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001357359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-7179 1860-7187 |
| IngestDate | Tue Nov 04 02:04:52 EST 2025 Thu Oct 02 06:34:09 EDT 2025 Sat Nov 29 14:20:52 EST 2025 Wed Feb 19 02:00:24 EST 2025 Tue Nov 18 20:02:52 EST 2025 Sat Nov 29 07:17:26 EST 2025 Wed Jan 22 17:11:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | Medicinal chemistry SARS-CoV-2 nsp16 Structural biology Methyltransferase |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4698-a289b714377e5ad93375457afdeb54a0423e929e16d56353c7ee02357d0dff843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0221-8658 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202400618 |
| PMID | 39258386 |
| PQID | 3145174268 |
| PQPubID | 986335 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11648818 proquest_miscellaneous_3102880821 proquest_journals_3145174268 pubmed_primary_39258386 crossref_citationtrail_10_1002_cmdc_202400618 crossref_primary_10_1002_cmdc_202400618 wiley_primary_10_1002_cmdc_202400618_CMDC202400618 |
| PublicationCentury | 2000 |
| PublicationDate | December 16, 2024 |
| PublicationDateYYYYMMDD | 2024-12-16 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 16, 2024 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | ChemMedChem |
| PublicationTitleAlternate | ChemMedChem |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2021; 14 2023; 1867 2021; 7 2020; 5 2021; 12 2023; 28 2022 2010; 468 2020 2023; 256 2023; 8 2023; 9 2021; 118 2016; 31 2022; 13 2020; 13 2022; 31 2022; 65 2020; 11 2020; 201 2008; 82 Rosas-Lemus M. (e_1_2_8_26_1) 2020 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 Park G. J. (e_1_2_8_3_1) 2022 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – volume: 12 start-page: 1102 year: 2021 end-page: 1107 publication-title: ACS Med. Chem. Lett. – volume: 65 start-page: 6231 year: 2022 end-page: 6249 publication-title: J. Med. Chem. – volume: 13 start-page: 1477 year: 2022 end-page: 1484 publication-title: ACS Med. Chem. Lett. – volume: 5 start-page: 131 year: 2020 publication-title: Signal Transduction Target Ther. – volume: 31 year: 2022 publication-title: Protein Sci. – volume: 11 start-page: 4 year: 2020 end-page: 10 publication-title: Nat. Commun. – volume: 14 start-page: 1243 year: 2021 publication-title: Pharmaceuticals (Basel) – volume: 1867 year: 2023 publication-title: Biochim. Biophys. Acta (BBA) – Gen. Subj. – volume: 468 start-page: 452 year: 2010 end-page: 456 publication-title: Nature – volume: 82 start-page: 8071 year: 2008 end-page: 8084 publication-title: J. Virol. – volume: 11 start-page: 3717 year: 2020 publication-title: Nat. Commun. – volume: 256 year: 2023 publication-title: Eur. J. Med. Chem. – volume: 8 start-page: 27410 year: 2023 end-page: 27418 publication-title: ACS Omega – volume: 12 start-page: 3287 year: 2021 publication-title: Nat. Commun. – year: 2022 publication-title: Nature – volume: 31 start-page: 3 year: 2016 end-page: 11 publication-title: Virol. Sin. – volume: 28 start-page: 988 year: 2023 publication-title: Molecules – volume: 201 year: 2020 publication-title: Eur. J. Med. Chem. – year: 2020 publication-title: BioRxiv – volume: 28 start-page: 768 year: 2023 publication-title: Molecules – volume: 7 start-page: 2214 year: 2021 end-page: 2220 publication-title: ACS Infect. Dis. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. – volume: 14 year: 2021 publication-title: Sci. Signal – volume: 9 start-page: 1918 year: 2023 end-page: 1931 publication-title: ACS Infect. Dis. – volume: 13 start-page: 1 year: 2020 end-page: 12 publication-title: Sci. Signal – volume: 5 start-page: 536 year: 2020 end-page: 544 publication-title: Nat. Microbiol. – year: 2020 ident: e_1_2_8_26_1 publication-title: BioRxiv – ident: e_1_2_8_17_1 doi: 10.1021/acsmedchemlett.2c00265 – ident: e_1_2_8_2_1 doi: 10.1007/s12250-016-3726-4 – ident: e_1_2_8_8_1 doi: 10.1021/acsinfecdis.3c00203 – ident: e_1_2_8_4_1 doi: 10.1128/JVI.00407-08 – ident: e_1_2_8_1_1 doi: 10.1038/s41564-020-0695-z – ident: e_1_2_8_18_1 doi: 10.1016/j.ejmech.2020.112557 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-021-23594-y – ident: e_1_2_8_7_1 doi: 10.3390/ph14121243 – ident: e_1_2_8_13_1 doi: 10.1021/acsmedchemlett.1c00140 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.2100170118 – ident: e_1_2_8_24_1 doi: 10.1038/s41392-020-00241-4 – ident: e_1_2_8_16_1 doi: 10.1021/acs.jmedchem.2c00120 – ident: e_1_2_8_15_1 doi: 10.1002/pro.4395 – ident: e_1_2_8_9_1 doi: 10.1016/j.bbagen.2023.130319 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-019-13796-w – ident: e_1_2_8_12_1 doi: 10.1021/acsomega.3c02815 – ident: e_1_2_8_11_1 doi: 10.1016/j.ejmech.2023.115474 – ident: e_1_2_8_19_1 doi: 10.1126/scisignal.abe1202 – ident: e_1_2_8_14_1 doi: 10.3390/molecules28020768 – ident: e_1_2_8_21_1 doi: 10.1126/scisignal.abh2071 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-020-17495-9 – ident: e_1_2_8_5_1 doi: 10.1038/nature09489 – year: 2022 ident: e_1_2_8_3_1 publication-title: Nature – ident: e_1_2_8_6_1 doi: 10.3390/molecules28030988 – ident: e_1_2_8_10_1 doi: 10.1021/acsinfecdis.1c00131 |
| SSID | ssj0044818 |
| Score | 2.4142036 |
| Snippet | Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent... Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202400618 |
| SubjectTerms | Antiviral Agents - chemistry Antiviral Agents - pharmacology Binding Sites Capping Catalytic Domain Coronaviruses COVID-19 Crystallography Crystallography, X-Ray Enzymatic activity Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Humans Inhibitors Innate immunity Medicinal chemistry Methionine Methylation Methyltransferase Methyltransferases - antagonists & inhibitors Methyltransferases - chemistry Methyltransferases - metabolism Models, Molecular mRNA mRNA guanylyltransferase nsp16 Nucleotides S-Adenosylmethionine - chemistry S-Adenosylmethionine - metabolism SARS-CoV-2 SARS-CoV-2 - drug effects SARS-CoV-2 - enzymology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Structural biology Substrate inhibition Viral Nonstructural Proteins - antagonists & inhibitors Viral Nonstructural Proteins - chemistry Viral Nonstructural Proteins - metabolism Viral Regulatory and Accessory Proteins |
| Title | Structural Basis for Inhibition of the SARS‐CoV‐2 nsp16 by Substrate‐Based Dual Site Inhibitors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202400618 https://www.ncbi.nlm.nih.gov/pubmed/39258386 https://www.proquest.com/docview/3145174268 https://www.proquest.com/docview/3102880821 https://pubmed.ncbi.nlm.nih.gov/PMC11648818 |
| Volume | 19 |
| WOSCitedRecordID | wos001357359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1860-7187 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044818 issn: 1860-7179 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag5cCFf8pCqYyEyqVW13ES28eyywokqFbdFu0tcuKJuhIkVUOR9sYj8Iw8CTPOJttVhZDgEiXxTxx7xv5sj79h7LUprEm9AZHHzgrs_ayw1hVCgwIJplRg8-BsQh8fm_ncTq-d4m_5IfoFN9KM0F-Tgru8OVyThhZfPVEQkg1kKs1tti2lMuS8IYqnXV-Mc4-wwidNOhQ4cbEdbeMwOtxMvzks3cCaN00mr0PZMBZN7v__Xzxg91Y4lB-1gvOQ3YLqEduftkTWywN-uj6X1RzwfT5dU1wvHzOYBdpZouzgb12zaDhiX_6hOl_kwQSM1yVHZMlnRyezXz9-jurPeI141VzIlOdLTt1VoMXF15gePB9fYVYzxL9dLvVl84SdTd6djt6LlcMGUZAjSuFw9paTQ3WtIXHeKvKvm2hXesiT2JEJDiAcA5n6BIGOKjRA4NvxQ1-WJlZP2VZVV_CMcZsMweWg4kSWcak9ShSKlEXRkqkrFAyY6NorK1Zs5uRU40vW8jBHGdVs1tfsgL3p41-0PB5_jLnbNX-20ucmU-TQWCOaweBXfTBqIm2vuArqK4qDWM0gpJIDttNKS_8pRKG0P50OmNmQoz4CsXxvhlSL88D2LXFCawyVKwqC9JfiZ6NP41H_9PxfEr1gd-mejHZkusu2UKLgJbtTfP-2aC73goLhVc_NHtsen0zOPv4G6L8qlw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEB1BiwQv3C-BAouEyktXzca33ceSELUijaImRX2z1vZYjQR2VVOkvPEJfCNfwsz6EqIKISFeLHlvXttnds-ux2cA3urU6DDTKBPfGkmjn5HG2FRG6KFCnXtoEhdsIppO9dmZmTXehPwvTK0P0W24sWW48ZoNnDek99eqoemXjDUI2QkyVPombPuEJQL59uhkfDpph2NafrhNPqXDvqS1i2mVG_uD_c0WNmema3Tzutfk72zWTUfje__hRu7D3YaLioMaPA_gBhYPYXdWi1mv9sRi_W9WtSd2xWwtc716BDh30rMs2yHe22pZCeK_4qg4XybODUyUuSB2KeYHJ_Of338My090HIiiulChSFaChywnjUvJVB8zMbqipubEgdtWysvqMZyOPyyGh7IJ2iBTDkYpLa3gEg6qHkUY2Mx4HGM3iGyeYRL4lt1wkCgZqjALiOx4aYToNHeyfpbn2veewFZRFvgMhAn6aBP0_EDlfh5lhCqClSF4qdCmHvZAti8sThtFcw6s8TmutZgHMT_ZuHuyPXjXlb-otTz-WHKnff9xY9NV7HFQ44gYDWW_6bLJGvkTiy2wvOIyxNc00SrVg6c1XLpLERPlb9RhD_QGkLoCrPS9mVMsz53it6JFrdbcr4FD0l-6Hw-PR8Pu7Pm_VHoNtw8Xx5N4cjT9-ALucDo78ahwB7YIXfgSbqXfvi6ry1eNvf0CvS0tlQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BihAX3tBAASOhcumqcfZlH0tCREWJoqZFva2861k1Et2NuhQpN34Cv5Ffwoz3EaIKISEuK61f67Vn7M_2-BuANyrTKrIKvTQw2qPRT3tam8yL0UeJKvdRp87ZRDydqrMzPWusCfkuTM0P0W24sWa48ZoVHJc231-zhmYXljkI2QgykuombAXsSaYHW-PjyelROxzT8sNt8kkVDTxau-iWuXEw3N8sYXNmugY3r1tN_o5m3XQ0ufcffuQ-3G2wqDiohecB3MDiIezOajLr1Z44Wd_NqvbErpitaa5XjwDnjnqWaTvEO1MtKkH4VxwW54vUmYGJMheELsX84Hj-8_uPUfmZnkNRVEsZiXQleMhy1LgUTPnRivEVFTUnDNyWUl5Wj-F08v5k9MFrnDZ4GTuj9Ayt4FJ2qh7HGBqrffaxG8Ymt5iGgWEzHCRIhjKyIYEdP4sRHeeOHdg8V4H_BHpFWeA2CB0O0KToB6HMgzy2JFUkVprES0Ym87EPXtthSdYwmrNjjS9JzcU8TLhlk65l-_C2S7-suTz-mHKn7f-k0ekq8dmpcUyIhqJfd9GkjXzEYgosrzgN4TVFsEr24WktLt2nCInyGXXUB7UhSF0CZvrejCkW547xW9KiVimu19BJ0l-qn4w-jUfd27N_yfQKbs_Gk-TocPrxOdzhYLbhkdEO9Ei48AXcyr59XVSXLxt1-wUGei0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+Inhibition+of+the+SARS-CoV-2+nsp16+by+Substrate-Based+Dual+Site+Inhibitors&rft.jtitle=ChemMedChem&rft.au=Kalnins%2C+Gints&rft.au=Rudusa%2C+Laura&rft.au=Bula%2C+Anna+L&rft.au=Zelencova-Gopejenko%2C+Diana&rft.date=2024-12-16&rft.issn=1860-7187&rft.eissn=1860-7187&rft.volume=19&rft.issue=24&rft.spage=e202400618&rft_id=info:doi/10.1002%2Fcmdc.202400618&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon |