FlexyFont: Learning Transferring Rules for Flexible Typeface Synthesis

Maintaining consistent styles across glyphs is an arduous task in typeface design. In this work we introduce FlexyFont, a flexible tool for synthesizing a complete typeface that has a consistent style with a given small set of glyphs. Motivated by a key fact that typeface designers often maintain a...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 34; no. 7; pp. 245 - 256
Main Authors: Phan, H. Q., Fu, H., Chan, A. B.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.10.2015
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maintaining consistent styles across glyphs is an arduous task in typeface design. In this work we introduce FlexyFont, a flexible tool for synthesizing a complete typeface that has a consistent style with a given small set of glyphs. Motivated by a key fact that typeface designers often maintain a library of glyph parts to achieve a consistent typeface, we intend to learn part consistency between glyphs of different characters across typefaces. We take a part assembling approach by firstly decomposing the given glyphs into semantic parts and then assembling them according to learned sets of transferring rules to reconstruct the missing glyphs. To maintain style consistency, we represent the style of a font as a vector of pairwise part similarities. By learning a distribution over these feature vectors, we are able to predict the style of a novel typeface given only a few examples. We utilize a popular machine learning method as well as retrieval‐based methods to quantitatively assess the performance of our feature vector, resulting in favorable results. We also present an intuitive interface that allows users to interactively create novel typefaces with ease. The synthesized fonts can be directly used in real‐world design.
Bibliography:istex:064ED5A1830E525D01EEC03DB47F56061787408A
ArticleID:CGF12763
ark:/67375/WNG-XRKZ7VW3-P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12763