Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers
We present a topology optimization approach for the design of fluid-to-fluid heat exchangers which rests on an explicit meshed discretization of the phases at stake, at every iteration of the optimization process. The considered physical situations involve a weak coupling between the Navier–Stokes e...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 376; s. 113638 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.04.2021
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a topology optimization approach for the design of fluid-to-fluid heat exchangers which rests on an explicit meshed discretization of the phases at stake, at every iteration of the optimization process. The considered physical situations involve a weak coupling between the Navier–Stokes equations for the velocity and the pressure in the fluid, and the convection–diffusion equation for the temperature field. The proposed framework combines several recent techniques from the field of shape and topology optimization, and notably a level-set based mesh evolution algorithm for tracking shapes and their deformations, an efficient optimization algorithm for constrained shape optimization problems, and a numerical method to handle a wide variety of geometric constraints such as thickness constraints and non-penetration constraints. Our strategy is applied to the optimization of various types of heat exchangers. At first, we consider a simplified 2D cross-flow model where the optimized boundary is the section of the hot fluid phase flowing in the transverse direction, which is naturally composed of multiple holes. A minimum thickness constraint is imposed on the cross-section so as to account for manufacturing and maximum pressure drop constraints. In a second part, we optimize the design of 2D and 3D heat exchangers composed of two types of fluid channels (hot and cold), which are separated by a solid body. A non-mixing constraint between the fluid components containing the hot and cold phases is enforced by prescribing a minimum distance between them. Numerical results are presented on a variety of test cases, demonstrating the efficiency of our approach in generating new, realistic, and unconventional heat exchanger designs.
•We propose a body-fitted topology optimization approach for the design of fluid-to-fluid heat exchangers.•Two models of heat exchangers are considered : first a simplified 2D crossflow model, and then 2D and 3D heat exchangers featuring two distinct fluid phases.•A non-mixing constraint is enforced by prescribing a minimum distance between the two fluid phases.•Numerical results are presented on a variety of 2D situations and on a large scale 3D test case. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0045-7825 1879-2138 |
| DOI: | 10.1016/j.cma.2020.113638 |