FRVT 2006 and ICE 2006 Large-Scale Experimental Results

This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The FRVT 2006 looked at recognition from high-resolution still frontal face images and 3D face images, and measured performance for still frontal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 32; číslo 5; s. 831 - 846
Hlavní autoři: Phillips, P.J., Scruggs, W.T., O'Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.05.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The FRVT 2006 looked at recognition from high-resolution still frontal face images and 3D face images, and measured performance for still frontal face images taken under controlled and uncontrolled illumination. The ICE 2006 evaluation reported verification performance for both left and right irises. The images in the ICE 2006 intentionally represent a broader range of quality than the ICE 2006 sensor would normally acquire. This includes images that did not pass the quality control software embedded in the sensor. The FRVT 2006 results from controlled still and 3D images document at least an order-of-magnitude improvement in recognition performance over the FRVT 2002. The FRVT 2006 and the ICE 2006 compared recognition performance from high-resolution still frontal face images, 3D face images, and the single-iris images. On the FRVT 2006 and the ICE 2006 data sets, recognition performance was comparable for high-resolution frontal face, 3D face, and the iris images. In an experiment comparing human and algorithms on matching face identity across changes in illumination on frontal face images, the best performing algorithms were more accurate than humans on unfamiliar faces.
AbstractList This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The FRVT 2006 looked at recognition from high-resolution still frontal face images and 3D face images, and measured performance for still frontal face images taken under controlled and uncontrolled illumination. The ICE 2006 evaluation reported verification performance for both left and right irises. The images in the ICE 2006 intentionally represent a broader range of quality than the ICE 2006 sensor would normally acquire. This includes images that did not pass the quality control software embedded in the sensor. The FRVT 2006 results from controlled still and 3D images document at least an order-of-magnitude improvement in recognition performance over the FRVT 2002. The FRVT 2006 and the ICE 2006 compared recognition performance from high-resolution still frontal face images, 3D face images, and the single-iris images. On the FRVT 2006 and the ICE 2006 data sets, recognition performance was comparable for high-resolution frontal face, 3D face, and the iris images. In an experiment comparing human and algorithms on matching face identity across changes in illumination on frontal face images, the best performing algorithms were more accurate than humans on unfamiliar faces.
This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The FRVT 2006 looked at recognition from high-resolution still frontal face images and 3D face images, and measured performance for still frontal face images taken under controlled and uncontrolled illumination. The ICE 2006 evaluation reported verification performance for both left and right irises. The images in the ICE 2006 intentionally represent a broader range of quality than the ICE 2006 sensor would normally acquire. This includes images that did not pass the quality control software embedded in the sensor. The FRVT 2006 results from controlled still and 3D images document at least an order-of-magnitude improvement in recognition performance over the FRVT 2002. The FRVT 2006 and the ICE 2006 compared recognition performance from high-resolution still frontal face images, 3D face images, and the single-iris images. On the FRVT 2006 and the ICE 2006 data sets, recognition performance was comparable for high-resolution frontal face, 3D face, and the iris images. In an experiment comparing human and algorithms on matching face identity across changes in illumination on frontal face images, the best performing algorithms were more accurate than humans on unfamiliar faces.This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The FRVT 2006 looked at recognition from high-resolution still frontal face images and 3D face images, and measured performance for still frontal face images taken under controlled and uncontrolled illumination. The ICE 2006 evaluation reported verification performance for both left and right irises. The images in the ICE 2006 intentionally represent a broader range of quality than the ICE 2006 sensor would normally acquire. This includes images that did not pass the quality control software embedded in the sensor. The FRVT 2006 results from controlled still and 3D images document at least an order-of-magnitude improvement in recognition performance over the FRVT 2002. The FRVT 2006 and the ICE 2006 compared recognition performance from high-resolution still frontal face images, 3D face images, and the single-iris images. On the FRVT 2006 and the ICE 2006 data sets, recognition performance was comparable for high-resolution frontal face, 3D face, and the iris images. In an experiment comparing human and algorithms on matching face identity across changes in illumination on frontal face images, the best performing algorithms were more accurate than humans on unfamiliar faces.
Author Scruggs, W.T.
Flynn, P.J.
Bowyer, K.W.
O'Toole, A.J.
Schott, C.L.
Sharpe, M.
Phillips, P.J.
Author_xml – sequence: 1
  givenname: P.J.
  surname: Phillips
  fullname: Phillips, P.J.
  organization: Nat. Inst. of Stand. & Technol. (NIST), Gaithersburg, MD, USA
– sequence: 2
  givenname: W.T.
  surname: Scruggs
  fullname: Scruggs, W.T.
  organization: Sci. Applic. Int. Corp., Chantilly, VA, USA
– sequence: 3
  givenname: A.J.
  surname: O'Toole
  fullname: O'Toole, A.J.
  organization: Sch. of Behavioral & Brain Sci., Univ. of Texas at Dallas, Richardson, TX, USA
– sequence: 4
  givenname: P.J.
  surname: Flynn
  fullname: Flynn, P.J.
  organization: Dept. of Comput. Sci. & Eng., Univ. of Notre Dame, Notre Dame, IN, USA
– sequence: 5
  givenname: K.W.
  surname: Bowyer
  fullname: Bowyer, K.W.
  organization: Dept. of Comput. Sci. & Eng., Univ. of Notre Dame, Notre Dame, IN, USA
– sequence: 6
  givenname: C.L.
  surname: Schott
  fullname: Schott, C.L.
  organization: Schafer Corp., Arlington, VA, USA
– sequence: 7
  givenname: M.
  surname: Sharpe
  fullname: Sharpe, M.
  organization: Ames HCI Group, Moffett Field, IA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729170$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20299708$$D View this record in MEDLINE/PubMed
BookMark eNqF0VFr2zAQB3BROtq062OfBsMwyp6c3km2JT2WkHaBjJUu7atQ5NNwcexMsmH79lOWdIPC2JM4-P3v0N0ZO-76jhi7RJgigr5e3d98Xkw5gJ6W-ohNOFaQa675MZsAVjxXiqtTdhbjMwAWJYgTdsqBay1BTZi8fXhaZSleZbars8Vsvi-WNnyj_KuzLWXzH1sKzYa6wbbZA8WxHeJb9sbbNtLF4T1nj7fz1exTvvxyt5jdLHNXVGrIJXrkoiRrC88R144rL-pS1PW6Ilx7cFiSBlf7SgssLPii9lpQrclJ6Z04Zx_3fbeh_z5SHMymiY7a1nbUj9HIUkguRRryXymE0IgSk_zwSj73Y-jSNwwCl1gorXfq_UGN6w3VZptWYMNP87K7BK4OwMa0Jx9s55r413HJNUpITuydC32MgbxxzWCHpu-GYJs2zTS7S5rflzS7S5pSp1T-KvXS-F_-3d43RPTHFgqEKirxC2LuosA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCYB_2014_2379174
crossref_primary_10_1134_S1064230712060068
crossref_primary_10_1109_TIFS_2014_2309851
crossref_primary_10_1007_s10462_015_9431_0
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1007_s00371_017_1357_x
crossref_primary_10_1016_j_cosrev_2021_100400
crossref_primary_10_1016_j_prosdent_2014_06_013
crossref_primary_10_1016_j_tics_2018_06_006
crossref_primary_10_1109_TPAMI_2022_3152857
crossref_primary_10_1134_S0005117915110089
crossref_primary_10_1145_3651306
crossref_primary_10_1007_s10489_021_02925_y
crossref_primary_10_1109_TIFS_2012_2218598
crossref_primary_10_1049_iet_bmt_2013_0054
crossref_primary_10_1109_TIFS_2020_3023289
crossref_primary_10_1111_cogs_12633
crossref_primary_10_1007_s00371_013_0884_3
crossref_primary_10_1016_j_patcog_2017_08_028
crossref_primary_10_1016_j_imavis_2012_01_004
crossref_primary_10_1007_s00371_017_1428_z
crossref_primary_10_1016_j_imavis_2021_104109
crossref_primary_10_1007_s00530_024_01619_y
crossref_primary_10_1155_2017_1356385
crossref_primary_10_4028_www_scientific_net_AMR_753_755_2967
crossref_primary_10_1007_s41095_022_0317_1
crossref_primary_10_1109_ACCESS_2017_2766128
crossref_primary_10_1109_TIFS_2016_2541612
crossref_primary_10_1049_joe_2018_5055
crossref_primary_10_1109_TIP_2020_2999211
crossref_primary_10_1109_TIFS_2015_2403136
crossref_primary_10_1016_j_cviu_2016_04_012
crossref_primary_10_1145_2355598_2355599
crossref_primary_10_1016_j_imavis_2020_104058
crossref_primary_10_1134_S1054661819010176
crossref_primary_10_1007_s11276_018_1891_0
crossref_primary_10_1109_ACCESS_2013_2262916
crossref_primary_10_1007_s11082_022_03770_0
crossref_primary_10_1016_j_neucom_2015_06_117
crossref_primary_10_1016_j_ic_2023_105059
crossref_primary_10_1109_TIFS_2013_2285884
crossref_primary_10_1109_TIFS_2012_2214212
crossref_primary_10_1049_iet_bmt_2016_0178
crossref_primary_10_1016_j_imavis_2009_09_005
crossref_primary_10_1134_S1064230714020099
crossref_primary_10_1016_j_cviu_2011_06_010
crossref_primary_10_1007_s00371_013_0861_x
crossref_primary_10_1111_jerd_12125
crossref_primary_10_1111_j_2044_8295_2011_02039_x
crossref_primary_10_1109_TIFS_2011_2173932
crossref_primary_10_1016_j_csda_2013_05_025
crossref_primary_10_3390_s22176364
crossref_primary_10_1016_j_csda_2014_02_018
crossref_primary_10_1007_s11227_016_1840_6
crossref_primary_10_1016_j_jarmac_2018_06_002
crossref_primary_10_1016_j_jocs_2017_06_016
crossref_primary_10_1109_TSMCA_2011_2170416
crossref_primary_10_1134_S1064230720050135
crossref_primary_10_1016_j_patrec_2015_11_020
crossref_primary_10_1016_j_patrec_2011_11_024
crossref_primary_10_1049_iet_bmt_2016_0160
crossref_primary_10_1007_s00521_023_08800_w
crossref_primary_10_1109_TPAMI_2012_247
crossref_primary_10_1016_j_patrec_2015_02_009
crossref_primary_10_1016_j_patcog_2014_03_007
crossref_primary_10_1016_j_imavis_2012_02_004
crossref_primary_10_1145_3618113
crossref_primary_10_1177_0956797613492986
crossref_primary_10_1007_s00138_017_0887_6
crossref_primary_10_1109_TCYB_2013_2291196
crossref_primary_10_3390_sym10070256
crossref_primary_10_1016_j_inffus_2015_03_005
crossref_primary_10_1080_18756891_2013_802873
crossref_primary_10_1016_j_patrec_2016_12_013
crossref_primary_10_3390_sym13050910
crossref_primary_10_1080_13506285_2023_2250514
crossref_primary_10_1016_j_imavis_2018_09_004
crossref_primary_10_1016_j_patcog_2018_03_002
crossref_primary_10_1049_iet_bmt_2015_0016
crossref_primary_10_1109_TIFS_2016_2606083
crossref_primary_10_5772_52200
crossref_primary_10_1002_acp_2969
crossref_primary_10_1016_j_eswa_2016_09_036
crossref_primary_10_1038_s41598_022_22811_y
crossref_primary_10_1016_j_imavis_2013_12_002
crossref_primary_10_1007_s11042_023_16508_1
crossref_primary_10_1016_j_bspc_2025_108262
crossref_primary_10_1016_j_patrec_2015_06_011
crossref_primary_10_1118_1_3598434
crossref_primary_10_1109_LSP_2021_3079850
crossref_primary_10_1016_j_cviu_2013_01_005
crossref_primary_10_3758_s13428_022_02009_w
crossref_primary_10_1109_TIFS_2012_2190575
crossref_primary_10_1109_TPAMI_2014_2321570
crossref_primary_10_1109_LSP_2024_3522856
crossref_primary_10_1109_TPAMI_2011_49
crossref_primary_10_1016_j_imavis_2011_12_007
crossref_primary_10_1016_j_procs_2018_10_419
crossref_primary_10_20965_jaciii_2019_p0465
crossref_primary_10_1016_j_patrec_2013_06_009
crossref_primary_10_1109_ACCESS_2019_2924464
crossref_primary_10_1049_iet_bmt_2014_0038
crossref_primary_10_1007_s00500_020_04856_1
crossref_primary_10_1007_s11263_013_0631_2
crossref_primary_10_1134_S1054661814020126
crossref_primary_10_1016_j_cviu_2015_03_003
crossref_primary_10_1007_s10462_021_10028_w
crossref_primary_10_1007_s10489_020_01924_9
crossref_primary_10_1049_iet_bmt_2015_0043
crossref_primary_10_1371_journal_pone_0119460
crossref_primary_10_1016_j_patcog_2016_12_029
crossref_primary_10_1109_TIFS_2011_2109951
crossref_primary_10_1016_j_patcog_2020_107422
crossref_primary_10_3390_s18030795
crossref_primary_10_3390_s24072269
crossref_primary_10_1007_s11554_019_00859_w
crossref_primary_10_1186_1687_5281_2014_34
crossref_primary_10_1016_j_dsp_2020_102809
crossref_primary_10_1134_S1054661816020115
crossref_primary_10_1073_pnas_1721355115
crossref_primary_10_1134_S1064230711050157
crossref_primary_10_1002_tee_22057
crossref_primary_10_1080_13506285_2013_803505
crossref_primary_10_1109_TIFS_2011_2177659
crossref_primary_10_1007_s11042_017_4668_z
crossref_primary_10_1016_j_imavis_2016_08_004
crossref_primary_10_1109_ACCESS_2017_2784352
crossref_primary_10_3390_app9102042
crossref_primary_10_1007_s11042_016_4085_8
crossref_primary_10_1109_ACCESS_2019_2911056
crossref_primary_10_1016_j_patcog_2010_05_024
crossref_primary_10_1109_ACCESS_2019_2902470
crossref_primary_10_3390_a16020087
crossref_primary_10_1145_1870076_1870082
Cites_doi 10.1068/p2896
10.1109/34.879790
10.1109/TPAMI.2007.1107
10.1007/s00138-004-0144-7
10.1109/2.820040
10.1109/TPAMI.2007.37
10.1109/TPAMI.2007.1019
10.1109/CVPR.2005.584
10.1016/j.cviu.2007.08.005
10.1016/j.cviu.2005.05.005
10.7717/peerj-cs.919/fig-2
10.1007/3-540-44887-X_109
10.1109/TSMCA.2008.2008210
10.1016/S0262-8856(97)00070-X
10.1109/CVPR.2005.268
10.6028/NIST.IR.6965
10.1162/jocn.1991.3.1.71
10.1016/S1364-6613(00)01519-9
10.1109/AFGR.2008.4813375
10.1145/954339.954342
10.1109/34.598235
10.1109/FGR.2006.87
10.1007/978-3-642-72201-1_10
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2009.59
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 846
ExternalDocumentID 2716517561
20299708
22729170
10_1109_TPAMI_2009_59
4803846
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c468t-71f1235eaa4f211bc28f3d53ddb6e1bf0c15e90cdf69314a0f4df93ed9ec77fc3
IEDL.DBID RIE
ISICitedReferencesCount 242
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275569300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 00:59:58 EDT 2025
Sun Sep 28 07:42:44 EDT 2025
Sun Jun 29 15:32:06 EDT 2025
Mon Jul 21 05:48:43 EDT 2025
Mon Jul 21 09:17:12 EDT 2025
Sat Nov 29 08:07:33 EST 2025
Tue Nov 18 21:45:11 EST 2025
Tue Aug 26 16:57:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Biometrics
Performance evaluation
High performance
High resolution
Iris (eye)
evaluations
Face recognition
Image processing
Measurement sensor
Pattern recognition
Boarded computer
Luminance
Image matching
Quality control
Facies
Software quality
Frontal
Fixed image
Illumination
Tridimensional image
human performance
iris recognition
Pattern analysis
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-71f1235eaa4f211bc28f3d53ddb6e1bf0c15e90cdf69314a0f4df93ed9ec77fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20299708
PQID 1027148991
PQPubID 85458
PageCount 16
ParticipantIDs pascalfrancis_primary_22729170
proquest_miscellaneous_733391171
proquest_miscellaneous_753727312
ieee_primary_4803846
proquest_journals_1027148991
crossref_primary_10_1109_TPAMI_2009_59
crossref_citationtrail_10_1109_TPAMI_2009_59
pubmed_primary_20299708
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2010
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Mansfield (ref18) 2002
ref10
ref2
ref1
ref17
ref16
ref19
McCabe (ref20) 1997
(ref8) 2007
ref24
ref23
ref26
Phillips (ref11) 2003
ref25
Crawley (ref29) 2002
ref22
ref21
(ref7) 2005
ref28
ref27
ref9
ref4
ref3
ref6
ref5
Flynn (ref15) 2008
References_xml – ident: ref26
  doi: 10.1068/p2896
– volume-title: technical report
  year: 2002
  ident: ref18
  article-title: Best Practices in Testing and Reporting Performance of Biometric Devices. Version 2.1
– ident: ref3
  doi: 10.1109/34.879790
– year: 1997
  ident: ref20
  article-title: Best Practice Recommendation for the Capture of Mugshots Version 2.0
– volume-title: technical report
  year: 2005
  ident: ref7
  article-title: Independent Testing of Iris Recognition Technology
– ident: ref19
  doi: 10.1109/TPAMI.2007.1107
– ident: ref23
  doi: 10.1007/s00138-004-0144-7
– ident: ref6
  doi: 10.1109/2.820040
– ident: ref13
  doi: 10.1109/TPAMI.2007.37
– ident: ref12
  doi: 10.1109/TPAMI.2007.1019
– ident: ref14
  doi: 10.1109/CVPR.2005.584
– ident: ref5
  doi: 10.1016/j.cviu.2007.08.005
– ident: ref16
  doi: 10.1016/j.cviu.2005.05.005
– volume-title: Statistical Computing
  year: 2002
  ident: ref29
– ident: ref4
  doi: 10.7717/peerj-cs.919/fig-2
– volume-title: technical report
  year: 2008
  ident: ref15
  article-title: ICE Mining: Quality and Demographic Investigation of ICE 2006 Performance Results
– ident: ref17
  doi: 10.1007/3-540-44887-X_109
– ident: ref21
  doi: 10.1109/TSMCA.2008.2008210
– ident: ref2
  doi: 10.1016/S0262-8856(97)00070-X
– ident: ref9
  doi: 10.1109/CVPR.2005.268
– volume-title: Technical Report NISTIR 6965
  year: 2003
  ident: ref11
  article-title: Face Recognition Vendor Test 2002: Evaluation Report
  doi: 10.6028/NIST.IR.6965
– ident: ref25
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref22
  doi: 10.1016/S1364-6613(00)01519-9
– ident: ref24
  doi: 10.1109/AFGR.2008.4813375
– ident: ref1
  doi: 10.1145/954339.954342
– volume-title: Authenti-Corp “Iris Recognition Study 2006 (IRIS06),” technical report, version 0.40
  year: 2007
  ident: ref8
– ident: ref27
  doi: 10.1109/34.598235
– ident: ref10
  doi: 10.1109/FGR.2006.87
– ident: ref28
  doi: 10.1007/978-3-642-72201-1_10
SSID ssj0014503
Score 2.4876702
Snippet This paper describes the large-scale experimental results from the Face Recognition Vendor Test (FRVT) 2006 and the Iris Challenge Evaluation (ICE) 2006. The...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 831
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Biometrics
Biometry - methods
Computer science; control theory; systems
Computer systems and distributed systems. User interface
evaluations
Exact sciences and technology
Face - anatomy & histology
Face recognition
Human
human performance
Humans
Ice
Illumination
Image Interpretation, Computer-Assisted - methods
Image recognition
Image sensors
Intelligence
Iris
iris recognition
Large-scale systems
Lighting
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Recognition
Reproducibility of Results
Sensitivity and Specificity
Sensors
Software
Software engineering
Studies
Testing
Three dimensional
Waveguide discontinuities
Title FRVT 2006 and ICE 2006 Large-Scale Experimental Results
URI https://ieeexplore.ieee.org/document/4803846
https://www.ncbi.nlm.nih.gov/pubmed/20299708
https://www.proquest.com/docview/1027148991
https://www.proquest.com/docview/733391171
https://www.proquest.com/docview/753727312
Volume 32
WOSCitedRecordID wos000275569300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN7SNqkH27SRYfSU9zYlr2SjiHskkAaQroNezP6GEEheEu8m9_fkex1tpAUcrPxgMRohplnSe8BfOW5UYV3PpUaNQEUK1PjAxOm5FpYQwU6EpjeXoqrKzmfq-stOB7uwiBiPHyG38Nj3Mt3C7sKv8pOSplxqpfbsC2E6O5qDTsGZRVVkKmDoQwnGPHIp3kyuz79cdFRU1aBJZTwvlIiCEpulKKorRJORuqWnOM7VYvn285YfqZ7L5v4W9jt20x22sXFO9jCZh_21hIOrM_ofXizwUd4AGJ6cztjAf4z3Th2cTbpXi7DcfH0J80Y2WRDEoDdYLu6W7bv4dd0Mjs7T3tlhdSWY7lMRe7DHVnUuvSEAI0tpOeu4s6ZMebGZzavUGXW-bHieakzXzqvODqFVghv-QfYaRYNfgJmVGkCS700hpoTW-ixrLAwUmonjbc6geO1k2vb044H9Yu7OsKPTNVxeYIcpqorlcC3wfxPx7fxnOFB8PNg1Ls4gdE_Kzh8LwqCEbnIEjhaL2ndp2tLIxSCcCH1ygmw4TMlWtg90Q0uVm0tOOdUGcT_TCoe2sG8SOBjFyyPw_cx9_npaR_C6_WxhCw_gp3l_Qq_wCv7sPzd3o8o3udyFOP9L_0j-FI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sFto-1FZbu_WjeSh9cnXzsZfkUeQOj56H2Kv4tuQTCrIn7l3__ibZvfUKteDbLhlImMwwM8nk9wP4SrGWxFufC-VUKFCMyLWPSJiCKm50CNAJwPRmwqdTcXsrrzbguH8L45xLzWfuJH6mu3w7N8t4VHbKREFDvHwBWyVjBLevtfo7A1YmHuSQwwQfD4XEI6Lm6ezq7HLcglOWESc0VPxS8kgpuRaMErtK7I1UTVCPb3ktnk48UwAabT9v6e_gbZdoorPWMt7Dhqt3YHtF4oA6n96BN2uIhLvAR9c3MxQPAJCqLRqfD9ufSWwYz3-EFTs0XCMFQNeuWd4tmg_wczScnV_kHbdCbthALHKOfXwl65RiPtSA2hDhqS2ptXrgsPaFwaWThbF-IClmqvDMekmdlc5w7g39CJv1vHafAGnJdMSpF1qH9MQQNRClI1oIZYX2RmVwvFJyZTrg8ch_cVelAqSQVdqeSIgpq1Jm8K0Xv28RN54S3I167oU6FWdw9NcO9uOEhEIC8yKDg9WWVp3DNmEGwkNlGLLlDFA_HFwt3p-o2s2XTcUppSE28P-JlDQmhJhksNcay-P0nc19_veyv8Cri9nlpJqMp9_34fWqSaHAB7C5eFi6Q3hpfi9-NQ9Hyer_ADIo-rE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FRVT+2006+and+ICE+2006+Large-Scale+Experimental+Results&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=PHILLIPS%2C+P.+Jonathon&rft.au=SCRUGGS%2C+W.+Todd&rft.au=O%27TOOLE%2C+Alice+J&rft.au=FLYNN%2C+Patrick+J&rft.date=2010-05-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=32&rft.issue=5&rft.spage=831&rft.epage=846&rft_id=info:doi/10.1109%2Ftpami.2009.59&rft.externalDBID=n%2Fa&rft.externalDocID=22729170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon