Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer

The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the standard QAOA Ansatz is not optimal, there is no systematic approach for finding be...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review research Ročník 4; číslo 3; s. 033029
Hlavní autori: Zhu, Linghua, Tang, Ho Lun, Barron, George S., Calderon-Vargas, F. A., Mayhall, Nicholas J., Barnes, Edwin, Economou, Sophia E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Physical Society 11.07.2022
ISSN:2643-1564, 2643-1564
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the standard QAOA Ansatz is not optimal, there is no systematic approach for finding better Ansätze. We address this problem by developing an iterative version of QAOA that is problem tailored, and which can also be adapted to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA, while simultaneously reducing the required number of CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of shortcuts to adiabaticity.
Bibliografia:USDOE
SC0019318; SC0019199
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.4.033029