Tuning Crystal Ordering, Electronic Structure, and Morphology in Organic Semiconductors: Tetrathiafulvalenes as a Model Case

Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF‐derivatives are ideal candidates to perform molecule–...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 26; číslo 14; s. 2256 - 2275
Hlavní autoři: Pfattner, Raphael, Bromley, Stefan T., Rovira, Concepció, Mas-Torrent, Marta
Médium: Journal Article
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 12.04.2016
Wiley-VCH
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF‐derivatives are ideal candidates to perform molecule–property correlation studies and, especially, to elucidate the impact of molecular and crystal engineering on device performance. A brief introduction into the state‐of‐the‐art of the field‐effect mobility values achieved with TTF derivatives employing different fabrication techniques is provided. Following, structure–performance relationships are discussed, including polymorphism, a phenomenon which is crucial to control for ensuring device reproducibility. It is also shown that chemical modification of TTFs has a strong influence on the electronic structure of these materials, affecting their stability as well as the nature of the generated charge carriers, leading to devices with p‐channel, n‐channel, or even ambipolar behaviour. TTFs have also shown promise in other applications, such as phototransistors, sensors, or as dopants or components of organic metal charge transfer salts used as source–drain contacts. Overall, TTFs are appealing building blocks in organic electronics, not only because they can be tailored to perform fundamental studies, but also because they offer a wide spectrum of potential applications. Tetrathiafulvalenes are promising active materials in organic field‐effect transistors (OFETs), in which they exhibit high performances. An overview is provided of the use of this family of materials as a model building block for OFETs to highlight general concepts of organic semiconductors and their use in devices.
AbstractList Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF‐derivatives are ideal candidates to perform molecule–property correlation studies and, especially, to elucidate the impact of molecular and crystal engineering on device performance. A brief introduction into the state‐of‐the‐art of the field‐effect mobility values achieved with TTF derivatives employing different fabrication techniques is provided. Following, structure–performance relationships are discussed, including polymorphism, a phenomenon which is crucial to control for ensuring device reproducibility. It is also shown that chemical modification of TTFs has a strong influence on the electronic structure of these materials, affecting their stability as well as the nature of the generated charge carriers, leading to devices with p‐channel, n‐channel, or even ambipolar behaviour. TTFs have also shown promise in other applications, such as phototransistors, sensors, or as dopants or components of organic metal charge transfer salts used as source–drain contacts. Overall, TTFs are appealing building blocks in organic electronics, not only because they can be tailored to perform fundamental studies, but also because they offer a wide spectrum of potential applications.
Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF-derivatives are ideal candidates to perform molecule-property correlation studies and, especially, to elucidate the impact of molecular and crystal engineering on device performance. A brief introduction into the state-of-the-art of the field-effect mobility values achieved with TTF derivatives employing different fabrication techniques is provided. Following, structure-performance relationships are discussed, including polymorphism, a phenomenon which is crucial to control for ensuring device reproducibility. It is also shown that chemical modification of TTFs has a strong influence on the electronic structure of these materials, affecting their stability as well as the nature of the generated charge carriers, leading to devices with p-channel, n-channel, or even ambipolar behaviour. TTFs have also shown promise in other applications, such as phototransistors, sensors, or as dopants or components of organic metal charge transfer salts used as source-drain contacts. Overall, TTFs are appealing building blocks in organic electronics, not only because they can be tailored to perform fundamental studies, but also because they offer a wide spectrum of potential applications. Tetrathiafulvalenes are promising active materials in organic field-effect transistors (OFETs), in which they exhibit high performances. An overview is provided of the use of this family of materials as a model building block for OFETs to highlight general concepts of organic semiconductors and their use in devices.
Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for organic field effect transistors (OFETs). Because they can be easily chemically modified, TTF‐derivatives are ideal candidates to perform molecule–property correlation studies and, especially, to elucidate the impact of molecular and crystal engineering on device performance. A brief introduction into the state‐of‐the‐art of the field‐effect mobility values achieved with TTF derivatives employing different fabrication techniques is provided. Following, structure–performance relationships are discussed, including polymorphism, a phenomenon which is crucial to control for ensuring device reproducibility. It is also shown that chemical modification of TTFs has a strong influence on the electronic structure of these materials, affecting their stability as well as the nature of the generated charge carriers, leading to devices with p‐channel, n‐channel, or even ambipolar behaviour. TTFs have also shown promise in other applications, such as phototransistors, sensors, or as dopants or components of organic metal charge transfer salts used as source–drain contacts. Overall, TTFs are appealing building blocks in organic electronics, not only because they can be tailored to perform fundamental studies, but also because they offer a wide spectrum of potential applications. Tetrathiafulvalenes are promising active materials in organic field‐effect transistors (OFETs), in which they exhibit high performances. An overview is provided of the use of this family of materials as a model building block for OFETs to highlight general concepts of organic semiconductors and their use in devices.
Author Rovira, Concepció
Mas-Torrent, Marta
Bromley, Stefan T.
Pfattner, Raphael
Author_xml – sequence: 1
  givenname: Raphael
  surname: Pfattner
  fullname: Pfattner, Raphael
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
– sequence: 2
  givenname: Stefan T.
  surname: Bromley
  fullname: Bromley, Stefan T.
  organization: Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
– sequence: 3
  givenname: Concepció
  surname: Rovira
  fullname: Rovira, Concepció
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
– sequence: 4
  givenname: Marta
  surname: Mas-Torrent
  fullname: Mas-Torrent, Marta
  email: mmas@icmab.es
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
BookMark eNqF0c1rFDEUAPBBKthWr55z9NBdX5KZZMZbWdtabC3S9QMvIc282UazyZpkrAv-8WbdsoogQkK-3u8F3juo9nzwWFVPKUwpAHuu-2E5ZUAbYHUtHlT7VFAx4cDavd2efnxUHaT0GYBKyev96sd89NYvyCyuU9aOXMUeY7k4IicOTY7BW0OucxxNHiMeEe17chni6ja4sFgT64tY6F9BuLQm-L5EhphekDnmqPOt1cPovmmHHhPRZRTeoyMznfBx9XDQLuGT-_Wwend6Mp-9mlxcnZ3Pji8mphatmEgzUCN0A7pmDFAC6zrgYKBrb5paNo3UjeA9h6bGXvSmw3oo7x1I7G5AM35Y0W1ek0ajIhqMRmcVtP192EwGkile6gdtMc-2ZhXD1xFTVkubDDqnPYYxKdpCC4JxJkvo9D59DClFHNQq2qWOa0VBbVqjNq1Ru9YUUP8FjM062-BLyaz7N-u27M46XP_nE3X88vTyTzvZWpsyft9ZHb8oIbls1Ic3Z0q-716_5eKTuuY_Aaa-tSY
CitedBy_id crossref_primary_10_1016_j_synthmet_2018_11_021
crossref_primary_10_1002_admt_201900104
crossref_primary_10_1002_chem_202300572
crossref_primary_10_3390_cryst15080729
crossref_primary_10_1002_anie_202218176
crossref_primary_10_1002_chin_201624246
crossref_primary_10_1002_aelm_201700349
crossref_primary_10_1002_aelm_201700326
crossref_primary_10_1002_anie_201702148
crossref_primary_10_1002_chem_201802656
crossref_primary_10_1016_j_synthmet_2016_05_032
crossref_primary_10_1039_C8SC04845B
crossref_primary_10_1002_open_202500156
crossref_primary_10_1002_adfm_202006115
crossref_primary_10_1002_ange_201607537
crossref_primary_10_1002_admi_202500599
crossref_primary_10_1002_aelm_202200293
crossref_primary_10_1002_adfm_202315267
crossref_primary_10_1002_ijch_202300075
crossref_primary_10_1002_ange_201702148
crossref_primary_10_1002_ejoc_202100676
crossref_primary_10_1063_5_0138605
crossref_primary_10_1002_ange_202218176
crossref_primary_10_1002_anie_201910818
crossref_primary_10_1016_j_matdes_2020_108730
crossref_primary_10_1002_slct_202302271
crossref_primary_10_1016_j_dyepig_2019_107847
crossref_primary_10_3390_ma12142314
crossref_primary_10_1002_ange_201910818
crossref_primary_10_1016_j_mssp_2024_109250
crossref_primary_10_1039_D5ME00090D
crossref_primary_10_1002_anie_201607537
crossref_primary_10_1002_admi_201900950
Cites_doi 10.1016/j.orgel.2007.09.007
10.1021/cm00044a041
10.1039/b810993a
10.1016/j.orgel.2013.10.026
10.1038/ncomms4573
10.1103/PhysRevLett.97.256603
10.1039/c2sc20303k
10.1016/j.synthmet.2010.09.005
10.1007/s11434-012-5222-z
10.1002/adma.201201502
10.1039/C4CE01686F
10.1021/cm070956
10.1016/j.synthmet.2014.10.039
10.1002/1521-3773(20010504)40:9<1732::AID-ANIE17320>3.0.CO;2-7
10.1039/c1cp21507h
10.1002/adma.200602922
10.1063/1.4792704
10.1039/B510121B
10.1002/(SICI)1521-4095(199901)11:1<11::AID-ADMA11>3.0.CO;2-3
10.1039/C3TC32062F
10.1021/cm702690w
10.1021/cr100380z
10.1002/adma.201001446
10.1021/jp301536z
10.1002/adfm.201202473
10.1016/j.synthmet.2005.01.005
10.1016/j.cplett.2011.12.026
10.1021/ja507179d
10.1021/ja0390956
10.1021/cm1021867
10.1039/c1ce05559c
10.1016/j.colsurfa.2006.01.039
10.1039/b907592e
10.1039/b614393h
10.1021/cr0501386
10.1021/ja5091035
10.1088/0022-3727/43/7/075102
10.1063/1.4890237
10.1246/cl.2010.538
10.1039/c3ce41849a
10.1143/APEX.5.061601
10.1016/S0009-2614(03)00931-X
10.1016/j.orgel.2008.08.011
10.1063/1.3311554
10.1016/0038-1098(89)90121-X
10.1063/1.1527896
10.1039/C3NR05680E
10.1063/1.2784970
10.1016/0038-1098(73)90127-0
10.1103/PhysRevLett.104.246602
10.1016/j.synthmet.2010.11.009
10.1021/ja048342i
10.1002/(SICI)1521-4095(199803)10:5<382::AID-ADMA382>3.0.CO;2-Y
10.1063/1.373413
10.1351/pac200880112405
10.1246/cl.2008.1088
10.1021/ja0630083
10.1038/nmat978
10.1039/b603632e
10.1021/jp5070819
10.1016/j.orgel.2011.10.001
10.1246/cl.1986.1263
10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V
10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
10.1039/c3tc30442f
10.1007/s11426-012-4738-z
10.1039/B713688A
10.1002/cphc.200800771
10.1021/am3025036
10.1063/1.2834374
10.1103/PhysRevLett.107.066601
10.1021/jp9716546
10.1016/j.chemphys.2006.06.018
10.1002/adma.201003816
10.1021/jp073148e
10.1246/cl.2009.200
10.1039/c0cp01016b
10.1021/ja051755e
10.1016/S0009-2614(02)00441-4
10.1016/j.orgel.2012.03.033
10.1039/C3RA46784H
10.1039/b925875b
10.1063/1.1631751
10.1039/C3TC32571G
10.1021/jp055432g
10.1107/S010827010100703X
10.1103/PhysRevB.80.245305
10.1016/0379-6779(87)90964-7
10.1002/ejic.201201362
10.1039/c2jm32925e
10.1246/bcsj.20090290
10.1103/RevModPhys.65.599
10.1002/adfm.200701019
10.1016/j.synthmet.2004.08.023
10.1107/S010827019301011X
10.1039/B918874F
10.1039/C29710000889
10.1039/C1JM15037E
10.1063/1.3456545
10.1088/0957-4484/18/42/424009
10.1021/cm00055a010
10.1107/S0365110X61002163
10.1063/1.1848179
10.1021/cr100142w
10.1039/B613093C
10.1016/S0379-6779(02)00467-8
10.1107/S0567740868002657
10.1002/cphc.200500325
10.1002/adfm.201401228
10.1021/ja0175892
10.1002/chem.201404508
10.1039/c3tc30089g
10.1063/1.2940593
10.1021/cr040084k
10.1002/adma.200700007
10.1002/adma.200400570
10.1021/cg401883g
10.1016/0379-6779(93)90966-Z
10.1002/(SICI)1521-4095(199803)10:5<379::AID-ADMA379>3.0.CO;2-A
10.1002/chem.201304688
10.1039/c0jm01154a
10.1246/cl.2005.392
10.1038/ncomms6954
10.1103/PhysRevB.80.085201
10.1021/jo00091a017
10.1021/ja049762a
10.1016/j.cplett.2008.03.082
10.1021/jo101817j
10.1063/1.2709516
10.1021/ja00784a066
10.1107/S0108270194001149
ContentType Journal Article
Contributor Universitat de Barcelona
Contributor_xml – sequence: 1
  fullname: Universitat de Barcelona
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
(c) Wiley-VCH, 2016 info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: (c) Wiley-VCH, 2016 info:eu-repo/semantics/openAccess
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
XX2
DOI 10.1002/adfm.201502446
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Recercat
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2275
ExternalDocumentID oai_recercat_cat_2072_350208
10_1002_adfm_201502446
ADFM201502446
ark_67375_WNG_7V9KQ36Z_S
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
XX2
ID FETCH-LOGICAL-c4686-7cf1c6a50a4220e70299030c098b547557a563d3054ed6dc9e4f030907e9b0a23
IEDL.DBID DRFUL
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374258100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri Nov 07 13:36:54 EST 2025
Wed Oct 01 14:47:13 EDT 2025
Tue Nov 18 21:59:14 EST 2025
Sat Nov 29 07:19:54 EST 2025
Wed Jan 22 16:45:49 EST 2025
Tue Nov 11 03:33:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4686-7cf1c6a50a4220e70299030c098b547557a563d3054ed6dc9e4f030907e9b0a23
Notes ArticleID:ADFM201502446
istex:CE240D5E9D2831244B61D6BBC9EBDFDBAB4379E2
ark:/67375/WNG-7V9KQ36Z-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/350208
PQID 1808062327
PQPubID 23500
PageCount 20
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_350208
proquest_miscellaneous_1808062327
crossref_primary_10_1002_adfm_201502446
crossref_citationtrail_10_1002_adfm_201502446
wiley_primary_10_1002_adfm_201502446_ADFM201502446
istex_primary_ark_67375_WNG_7V9KQ36Z_S
PublicationCentury 2000
PublicationDate April 12, 2016
PublicationDateYYYYMMDD 2016-04-12
PublicationDate_xml – month: 04
  year: 2016
  text: April 12, 2016
  day: 12
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley-VCH
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-VCH
References M. Mas-Torrent, P. Hadley, X. Ribas, C. Rovira, Synth. Met. 2004, 146, 265.
Y. Liu, Y. Han, X. Zhao, Y. Tong, Q. Tang, Y. Liu, Synth. Met. 2014, 198, 248.
Y. Geng, R. Pfattner, A. Campos, J. Hauser, V. Laukhin, J. Puigdollers, J. Veciana, M. Mas-Torrent, C. Rovira, S. Decurtins, S.-X. Liu, Chem. Eur. J. 2014, 20, 7136.
N. M. Tucker, A. L. Briseno, O. Acton, H. Yip, H. Ma, S. A. Jenekhe, Y. Xia, A. K. Jen, Appl. Mater. Interfaces 2013, 5, 2320.
H. Li, X. Wang, Z. Li, Chin. Sci. Bull. 2012, 57, 4049.
A. M. Hiszpanski, R. M. Baur, B. Kim, N. J. Tremblay, C. Nuckolls, A. R. Woll, Y. Loo, J. Am. Chem. Soc. 2014, 136, 15749.
H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305.
S. Ukai, S. Igarashi, M. Nakajima, K. Marumoto, H. Ito, S. Kuroda, K. Nishimura, Y. Enomoto, G. Saito, Colloids Surf., A 2006, 284-285, 589.
L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, A. J. Heeger, Solid State Commun. 1973, 12, 1125.
M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101.
M. Pelletier, F. Brisse, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1994, 50, 1942.
T. Terauchi, S. Sumi, Y. Kobayashi, Y. Matsushita, A. Sato, Cryst. Growth Des. 2014, 14, 1412.
A. Tracz, T. Pakula, J. K. Jeszka, Mater. Sci.-Pol. 2004, 22, 415.
J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
N. Borjigin, J. Nishida, S. Tokito, L. Theogarajan, Y. Yamashita, Synth. Met. 2010, 160, 2323.
J. Casado, M. Z. Zgierski, M. Carmen, R. Delgado, J. T. L. Navarrete, M. Mas-torrent, C. Rovira, J. Phys. Chem. C 2007, 111, 10110.
R. Pfattner, C. Rovira, M. Mas-Torrent, Phys. Chem. Chem. Phys. 2014.
H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, C. Kloc, CrystEngComm 2014, 16, 5968.
X. Gao, W. Wu, Y. Liu, S. Jiao, W. Qiu, G. Yu, L. Wang, D. Zhu, J. Mater. Chem. 2007, 17, 736.
Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, G. Saito, Chem. Mater. 2007, 19, 6382.
C. Rovira, J. Veciana, N. Santalo, J. Tarres, J. Cirujeda, E. Molins, J. Llorca, E. Espinosa, J. Org. Chem. 1994, 59, 3307.
Naraso, J. Nishida, D. Kumaki, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2006, 128, 9598.
R. D. McCullough, Adv. Mater. 1998, 10, 93.
S. Tamura, T. Kadoya, T. Kawamoto, T. Mori, Appl. Phys. Lett. 2013, 102, 063305.
J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370.
R. Pfattner, M. Mas-Torrent, I. Bilotti, A. Brillante, S. Milita, F. Liscio, F. Biscarini, T. Marszalek, J. Ulanski, A. Nosal, M. Gazicki-Lipman, M. Leufgen, G. Schmidt, L. W. Molenkamp, V. Laukhin, J. Veciana, C. Rovira, Adv. Mater. 2010, 22, 4198.
Y. Diao, K. M. Lenn, W. Lee, M. A. Blood-Forsythe, J. Xu, Y. Mao, Y. Kim, J. A. Reinspach, S. Park, G. Xue, P. Clancy, A. Aspuru-Guzik, G. Xue, P. Clancy, Z. Bao, S. C. B. Mannsfeld, J. Am. Chem. Soc. 2014, 136, 17046.
I. Doi, E. Miyazaki, K. Takimiya, Chem. Lett. 2008, 37, 1088.
Y. Y. Liu, X. Zhao, B. Cai, T. Pei, Y. Tong, Q. Tang, Y. Y. Liu, Nanoscale 2014, 6, 1323.
D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, A. Gerhard, P. Stössel, H. Vestweber, Adv. Mater. 2005, 17, 31.
V. Lemaur, D. A. da Silva Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. van de Craats, K. Senthilkumar, L. D. A. Siebbeles, J. M. Warman, J.-L. Brédas, J. Cornil, J. Am. Chem. Soc. 2004, 126, 3271.
R. G. Della Valle, E. Venuti, A. Brillante, A. Girlando, J. Chem. Phys. 2003, 118, 807.
T. Takahashi, S. Tamura, Y. Akiyama, T. Kadoya, T. Kawamoto, T. Mori, Appl. Phys. Express 2012, 5, 061601.
L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 2011, 23, 1137.
R. Pfattner, E. Pavlica, M. Jaggi, S.-X. Liu, S. Decurtins, G. Bratina, J. Veciana, M. Mas-Torrent, C. Rovira, J. Mater. Chem. C 2013, 1, 3985.
R. Pfattner, C. Moreno, C. Voz, R. Alcubilla, C. Rovira, J. Puigdollers, M. Mas-Torrent, Org. Electron. 2014, 15, 211.
R. A. Marcus, Rev. Mod. Phys. 1993, 65, 599.
H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
B. Noda, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Chem. Lett. 2005, 34, 392.
C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 939.
I. A. Wright, N. J. Findlay, S. Arumugam, A. R. Inigo, A. L. Kanibolotsky, P. Zassowski, W. Domagala, P. J. Skabara, J. Mater. Chem. C 2014, 2, 2674.
Y. Geng, R. Pfattner, A. Campos, W. Wang, O. Jeannin, J. Hauser, J. Puigdollers, S. T. Bromley, S. Decurtins, J. Veciana, C. Rovira, M. Mas-Torrent, S.-X. Liu, Chem. Eur. J. 2014, 20, 16672.
W. F. Cooper, N. C. Kenny, J. W. Edmonds, A. Nagel, F. Wudl, P. Coppens, J. Chem. Soc. D 1971, 889.
A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899.
A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066.
J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971.
E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
L. Antolini, G. Horowitz, F. Kouki, F. Garnier, Adv. Mater. 1998, 10, 382.
M. Mas-Torrent, P. Hadley, N. Crivillers, J. Veciana, C. Rovira, ChemPhysChem 2006, 7, 86.
J. Inoue, M. Kanno, M. Ashizawa, C. Seo, A. Tanioka, T. Mori, Chem. Lett. 2010, 39, 538.
A. Brillante, R. G. Della Valle, L. Farina, A. Girlando, M. Masino, E. Venuti, Chem. Phys. Lett. 2002, 357, 32.
S. Kotarba, J. Jung, A. Kowalska, T. Marszalek, M. Kozanecki, P. Miskiewicz, M. Mas-Torrent, C. Rovira, J. Veciana, J. Puigmarti-Luis, J. Ulanski, J. Appl. Phys. 2010, 108, 014504.
T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306.
G. Yang, C. Di, G. Zhang, J. Zhang, J. Xiang, D. Zhang, D. Zhu, Adv. Funct. Mater. 2013, 23, 1671.
M. Kanno, Y. Bando, T. Shirahata, J. Inoue, H. Wada, T. Mori, J. Mater. Chem. 2009, 19, 6548.
Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J.-L. Fave, F. Garnier, Chem. Mater. 1995, 7, 1337.
E. Demiralp, W. A. Goddard, J. Phys. Chem. A 1997, 101, 8128.
M. Mas-Torrent, S. Masirek, P. Hadley, N. Crivillers, N. S. Oxtoby, P. Reuter, J. Veciana, C. Rovira, a. Tracz, Org. Electron. 2008, 9, 143.
X. K. Gao, Y. Wang, X. D. Yang, Y. Q. Liu, W. F. Qiu, W. P. Wu, H. J. Zhang, T. Qi, Y. Liu, K. Lu, C. Y. Du, Z. G. Shuai, G. Yu, D. B. Zhu, Adv. Mater. 2007, 19, 3037.
C. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313.
B. Noda, M. Katsuhara, I. Aoyagi, H. Nakajima, T. Mori, T. Taguchi, T. Kambayashi, M. Ofuji, Y. Takanishi, K. Ishikawa, H. Takezoe, H. Hosono, Proc. Int. Symp. Super-Functionality Org. Devices 2004, 1, 154.
F. Otón, R. Pfattner, E. Pavlica, Y. Olivier, G. Bratina, J. Cornil, J. Puigdollers, R. Alcubilla, X. Fontrodona, M. Mas-Torrent, J. Veciana, C. Rovira, CrystEngComm 2011, 13, 6597.
G. J. Visser, G. J. Heeres, J. Wolters, A. Vos, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1968, 24, 467.
C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
R. A. L. Silva, A. I. Neves, M. L. Afonso, I. C. Santos, E. B. Lopes, F. Del Pozo, R. Pfattner, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2013, 2013, 2440.
M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 012110.
T. Kakinuma, H. Kojima, T. Kawamoto, T. Mori, J. Mater. Chem. C 2013, 1, 2900.
Q. Wang, J. D. Wallis, Y. Wu, M. Pilkington, CrystEngComm 2014, 16, 10235.
H. Li, X. Wang, Z. Li, R. Zheng, Y. Zhu, Sci. China Chem. 2012, 55, 2176.
T. Marszalek, a. Nosal, R. Pfattner, J. Jung, S. Kotarba, M. Mas-Torrent, B. Krause, J. Veciana, M. Gazicki-Lipman, C. Crickert, G. Schmidt, C. Rovira, J. Ulanski, Org. Electron. 2012, 13, 121.
X. Gao, W. Qiu, Y. Liu, G. Yu, D. Zhu, Pure Appl. Chem. 2008, 80, 2405.
G. Nan, Z. Li, Org. Electron. 2012, 13, 1229.
B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009.
M. Mas-Torrent, C. Rovira, J. Mater. Chem. 2006, 16, 433.
F. Otón, R. Pfattner, N. S. Oxtoby, M. Mas-Torrent, K. Wurst, X. Fontrodona, Y. Olivier, J. Cornil, J. Veciana, C. Rovira, J. Org. Chem. 2011, 76, 154.
T. Kadoya, S. Tamura, T. Mori, J. Phys. Chem. C 2014, 118, 23139.
H. Jiang, X. Yang, E. Wang, Y. Fu, Y. Liu, H. Li, Z. Cui, Y. Liu, W. Hu, Synth. Met. 2011, 161, 136.
D. Holmes, S. Kumaraswamy, A. J. Matzger, K. P. C. Vollhardt, Chem. Eur. J. 1999, 5, 3399.
G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573.
A. Shehu, S. D. Quiroga, P. D'Angelo, C. Albonetti, F. Borgatti, M. Murgia, A. Scorzoni, P. Stoliar, F. Biscarini, Phys. Rev. Lett. 2010, 104, 246602.
A. Ellern, J. Bernstein, J. Y. Becker, S. Zamir, L. Shahal, S. Cohen, Chem. Mater. 1994, 6, 1378.
N. E. Gruhn, D. A. da Silva Filho, T. G. Bill, M. Malagoli, V. Coropceanu, A. Kahn, J.-L. Brédas, J. Am. Chem. Soc. 2002, 124, 7918.
K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, T. Mori, Appl. Phys. Lett. 2008, 92, 023305.
M.-S. Nam, a. Ardavan, R. J. Cava, P. M. Chaikin, Appl. Phys. Lett. 2003, 83, 4782.
S. Tamura, T. Kadoya, T. Mori, Appl. Phys. Lett. 2014, 105, 023301.
J.-F. Chang, T. Sakanoue, Y. Olivier, T. Uemura, M.-B. Dufourg-Madec, S. G. Yeates, J. Cornil, J. Takeya, A. Troisi, H. Sirringhaus, Phys. Rev. Lett. 2011, 107, 066601.
P. A. Chaloner, S. R. Gunatunga, P. B. Hitchcock, Acta Crystall
2004; 22
1973; 95
2007; 107
2013; 1
2009; 80
2010; 108
1973; 12
2000; 87
2010; 104
2008; 37
2014; 24
1971
2004; 1
2012; 13
2013; 5
2012; 523
2001; 40
2014; 136
2011; 111
2014; 20
2010; 22
2010; 20
2006; 328
2009; 10
2013; 2013
2014; 16
2014; 15
2014; 14
1981
2009; 19
1998; 10
2001; 57
2012; 22
2007; 17
2007; 18
2007; 19
2004; 146
2010; 39
1986; 15
2007; 90
2007; 91
2005; 86
2006; 110
2013; 102
2011; 76
1992
2010; 160
1995; 7
2010; 43
2012; 112
2006; 284–285
1993; 55
2002; 124
2005; 127
2005; 17
2012; 116
1968; 24
2004; 126
2003; 118
2013; 25
2013; 23
1993; 65
2008; 9
1930
2002; 357
2011; 13
2012; 57
2012; 55
1989; 72
2014; 5
2014; 4
2014; 2
2005; 149
1997; 101
2003; 2
1999; 11
2011; 23
2003; 83
2011; 161
2006; 128
2014; 6
2005; 34
2014; 118
2015; 6
2004; 104
2006; 97
2003; 138
2006; 16
2008; 18
2006; 7
2006
2008; 10
2004
2014; 198
2008; 92
1961; 14
1999; 5
2003; 375
1987; 18
2010; 83
2014; 105
2012; 3
2011; 107
2007; 111
2010; 133
2008; 457
1960
1994; 59
2014
1994; 50
2012; 5
2009; 38
2008; 80
1994; 6
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_1_1
e_1_2_11_141_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
Tracz A. (e_1_2_11_51_1) 2004; 22
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
Noda B. (e_1_2_11_34_1) 2004; 1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
Williams J. M. (e_1_2_11_17_1) 1992
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
Yamada J. (e_1_2_11_20_1) 2004
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
Pfattner R. (e_1_2_11_138_1) 2014
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – reference: M. Mas-Torrent, P. Hadley, N. Crivillers, J. Veciana, C. Rovira, ChemPhysChem 2006, 7, 86.
– reference: A. Ellern, J. Bernstein, J. Y. Becker, S. Zamir, L. Shahal, S. Cohen, Chem. Mater. 1994, 6, 1378.
– reference: I. Doi, E. Miyazaki, K. Takimiya, Chem. Lett. 2008, 37, 1088.
– reference: L. Tan, Y. Guo, Y. Yang, G. Zhang, D. Zhang, G. Yu, W. Xu, Y. Liu, Chem. Sci. 2012, 3, 2530.
– reference: D. H. Kim, H. S. Lee, H. Yang, L. Yang, K. Cho, Adv. Funct. Mater. 2008, 18, 1363.
– reference: G. Nan, Z. Li, Org. Electron. 2012, 13, 1229.
– reference: H. Li, X. Wang, Z. Li, R. Zheng, Y. Zhu, Sci. China Chem. 2012, 55, 2176.
– reference: W. F. Cooper, N. C. Kenny, J. W. Edmonds, A. Nagel, F. Wudl, P. Coppens, J. Chem. Soc. D 1971, 889.
– reference: Y. Y. Liu, X. Zhao, B. Cai, T. Pei, Y. Tong, Q. Tang, Y. Y. Liu, Nanoscale 2014, 6, 1323.
– reference: N. Borjigin, J. Nishida, S. Tokito, L. Theogarajan, Y. Yamashita, Synth. Met. 2010, 160, 2323.
– reference: G. Horowitz, D. Fichou, X. Peng, Z. Xu, F. Garnier, Solid State Commun. 1989, 72, 381.
– reference: M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 012110.
– reference: C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 939.
– reference: G. J. Visser, G. J. Heeres, J. Wolters, A. Vos, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1968, 24, 467.
– reference: C.-C. Lee, S.-W. Liu, Y.-T. Chung, J. Phys. D: Appl. Phys. 2010, 43, 075102.
– reference: S. Kotarba, J. Jung, A. Kowalska, T. Marszalek, M. Kozanecki, P. Miskiewicz, M. Mas-Torrent, C. Rovira, J. Veciana, J. Puigmarti-Luis, J. Ulanski, J. Appl. Phys. 2010, 108, 014504.
– reference: T. He, M. Stolte, C. Burschka, N. H. Hansen, T. Musiol, D. Kälblein, J. Pflaum, X. Tao, J. Brill, F. Würthner, Nat. Commun. 2015, 6, 5954.
– reference: J. Torras, S. Bromley, O. Bertran, F. Illas, Chem. Phys. Lett. 2008, 457, 154.
– reference: T. Yamada, R. Kumai, Y. Takahashi, T. Hasegawa, J. Mater. Chem. 2010, 20, 5810.
– reference: M. Katsuhara, I. Aoyagi, H. Nakajima, T. Mori, T. Kambayashi, M. Ofuji, Y. Takanishi, K. Ishikawa, H. Takezoe, H. Hosono, Synth. Met. 2005, 149, 219.
– reference: G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573.
– reference: W. Porzio, S. Destri, M. Mascherpa, S. Rossini, S. Brückner, Synth. Met. 1993, 55, 408.
– reference: Y. Diao, K. M. Lenn, W. Lee, M. A. Blood-Forsythe, J. Xu, Y. Mao, Y. Kim, J. A. Reinspach, S. Park, G. Xue, P. Clancy, A. Aspuru-Guzik, G. Xue, P. Clancy, Z. Bao, S. C. B. Mannsfeld, J. Am. Chem. Soc. 2014, 136, 17046.
– reference: J. Casado, M. Z. Zgierski, M. Carmen, R. Delgado, J. T. L. Navarrete, M. Mas-torrent, C. Rovira, J. Phys. Chem. C 2007, 111, 10110.
– reference: X. Gao, W. Wu, Y. Liu, S. Jiao, W. Qiu, G. Yu, L. Wang, D. Zhu, J. Mater. Chem. 2007, 17, 736.
– reference: M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101.
– reference: S. T. Bromley, M. Mas-Torrent, P. Hadley, C. Rovira, J. Am. Chem. Soc. 2004, 126, 6544.
– reference: J. Cornil, J.-L. Brédas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791.
– reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Mas-Torrent, C. Rovira, Y. Yamashita, Chem. Phys. Lett. 2012, 523, 74.
– reference: F. Otón, R. Pfattner, E. Pavlica, Y. Olivier, E. Moreno, J. Puigdollers, G. Bratina, J. Cornil, X. Fontrodona, M. Mas-Torrent, J. Veciana, C. Rovira, Chem. Mater. 2011, 23, 851.
– reference: Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
– reference: Y. Geng, R. Pfattner, A. Campos, W. Wang, O. Jeannin, J. Hauser, J. Puigdollers, S. T. Bromley, S. Decurtins, J. Veciana, C. Rovira, M. Mas-Torrent, S.-X. Liu, Chem. Eur. J. 2014, 20, 16672.
– reference: G. Yang, C. Di, G. Zhang, J. Zhang, J. Xiang, D. Zhang, D. Zhu, Adv. Funct. Mater. 2013, 23, 1671.
– reference: A. Amacher, H. Luo, Z. Liu, M. Bircher, M. Cascella, J. Hauser, S. Decurtins, D. Zhang, S.-X. Liu, RSC Adv. 2014, 4, 2873.
– reference: H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
– reference: J. Yamada, T. Sugimoto (Eds.), TTF Chemistry. Fundamentals and Applications of Tetrathiafulvalene; Kodansha-Springer, Berlin, Germany 2004.
– reference: A. Troisi, G. Orlandi, J. Phys. Chem. A 2006, 110, 4065.
– reference: L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 2011, 23, 1137.
– reference: M. Mas-Torrent, C. Rovira, Chem. Soc. Rev. 2008, 37, 827.
– reference: B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009.
– reference: H. Inokuchi, G. Saito, P. Wu, K. Seki, T. B. Tang, T. Mori, K. Imaeda, T. Enoki, Y. Higuchi, K. Inaka, N. Yasuoka, Chem. Lett. 1986, 15, 1263.
– reference: M. Kanno, Y. Bando, T. Shirahata, J. Inoue, H. Wada, T. Mori, J. Mater. Chem. 2009, 19, 6548.
– reference: A. Tracz, T. Pakula, J. K. Jeszka, Mater. Sci.-Pol. 2004, 22, 415.
– reference: T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306.
– reference: Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, G. Saito, Chem. Mater. 2007, 19, 6382.
– reference: T. Yoshino, K. Shibata, H. Wada, Y. Bando, K. Ishikawa, H. Takezoe, T. Mori, Chem. Lett. 2009, 38, 200.
– reference: I. Doi, E. Miyazaki, K. Takimiya, Y. Kunugi, Chem. Mater. 2007, 19, 5230.
– reference: M. Pelletier, F. Brisse, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1994, 50, 1942.
– reference: S. T. Bromley, F. Illas, M. Mas-Torrent, Phys. Chem. Chem. Phys. 2008, 10, 121.
– reference: S. Ukai, S. Igarashi, M. Nakajima, K. Marumoto, H. Ito, S. Kuroda, K. Nishimura, Y. Enomoto, G. Saito, Colloids Surf., A 2006, 284-285, 589.
– reference: A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066.
– reference: M.-S. Nam, a. Ardavan, R. J. Cava, P. M. Chaikin, Appl. Phys. Lett. 2003, 83, 4782.
– reference: R. Pfattner, C. Rovira, M. Mas-Torrent, Phys. Chem. Chem. Phys. 2014.
– reference: L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, A. J. Heeger, Solid State Commun. 1973, 12, 1125.
– reference: R. Pfattner, M. Mas-Torrent, C. Moreno, J. Puigdollers, R. Alcubilla, I. Bilotti, E. Venuti, A. Brillante, V. Laukhin, J. Veciana, C. Rovira, J. Mater. Chem. 2012, 22, 16011.
– reference: M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833.
– reference: J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, M. H. Wangbo, Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory, Prentice Hall, Englewood Cliffs, NJ, USA 1992.
– reference: Naraso, J. Nishida, D. Kumaki, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2006, 128, 9598.
– reference: J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370.
– reference: M. Mas-Torrent, S. Masirek, P. Hadley, N. Crivillers, N. S. Oxtoby, P. Reuter, J. Veciana, C. Rovira, a. Tracz, Org. Electron. 2008, 9, 143.
– reference: D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, A. Gerhard, P. Stössel, H. Vestweber, Adv. Mater. 2005, 17, 31.
– reference: R. D. McCullough, Adv. Mater. 1998, 10, 93.
– reference: Y. Geng, R. Pfattner, A. Campos, J. Hauser, V. Laukhin, J. Puigdollers, J. Veciana, M. Mas-Torrent, C. Rovira, S. Decurtins, S.-X. Liu, Chem. Eur. J. 2014, 20, 7136.
– reference: H. Li, R. Zheng, Q. Shi, Phys. Chem. Chem. Phys. 2011, 13, 5642.
– reference: Y. Liu, Y. Han, X. Zhao, Y. Tong, Q. Tang, Y. Liu, Synth. Met. 2014, 198, 248.
– reference: S. Tamura, T. Kadoya, T. Kawamoto, T. Mori, Appl. Phys. Lett. 2013, 102, 063305.
– reference: I. A. Wright, N. J. Findlay, S. Arumugam, A. R. Inigo, A. L. Kanibolotsky, P. Zassowski, W. Domagala, P. J. Skabara, J. Mater. Chem. C 2014, 2, 2674.
– reference: J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
– reference: E. Gann, X. Gao, C. Di, C. R. McNeill, Adv. Funct. Mater. 2014, 24, 7211.
– reference: T. Siegrist, C. Kloc, R. A. Laudise, H. E. Katz, R. C. Haddon, Adv. Mater. 1998, 10, 379.
– reference: R. G. Della Valle, E. Venuti, A. Brillante, A. Girlando, J. Chem. Phys. 2003, 118, 807.
– reference: R. A. L. Silva, A. I. Neves, M. L. Afonso, I. C. Santos, E. B. Lopes, F. Del Pozo, R. Pfattner, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2013, 2013, 2440.
– reference: R. Pfattner, M. Mas-Torrent, I. Bilotti, A. Brillante, S. Milita, F. Liscio, F. Biscarini, T. Marszalek, J. Ulanski, A. Nosal, M. Gazicki-Lipman, M. Leufgen, G. Schmidt, L. W. Molenkamp, V. Laukhin, J. Veciana, C. Rovira, Adv. Mater. 2010, 22, 4198.
– reference: A. Shehu, S. D. Quiroga, P. D'Angelo, C. Albonetti, F. Borgatti, M. Murgia, A. Scorzoni, P. Stoliar, F. Biscarini, Phys. Rev. Lett. 2010, 104, 246602.
– reference: K. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, O. D. Jurchescu, J. Mater. Chem. C 2014, 2, 3065.
– reference: N. E. Gruhn, D. A. da Silva Filho, T. G. Bill, M. Malagoli, V. Coropceanu, A. Kahn, J.-L. Brédas, J. Am. Chem. Soc. 2002, 124, 7918.
– reference: M. Mas-Torrent, C. Rovira, J. Mater. Chem. 2006, 16, 433.
– reference: P. A. Chaloner, S. R. Gunatunga, P. B. Hitchcock, Acta Crystallogr. C 1994, 50, 1941.
– reference: H. Li, R. Zheng, Q. Shi, J. Phys. Chem. C 2012, 116, 11886.
– reference: P. Ranzieri, A. Girlando, S. Tavazzi, M. Campione, L. Raimondo, I. Bilotti, A. Brillante, R. G. Della Valle, E. Venuti, ChemPhysChem 2009, 10, 657.
– reference: D. Holmes, S. Kumaraswamy, A. J. Matzger, K. P. C. Vollhardt, Chem. Eur. J. 1999, 5, 3399.
– reference: B. Noda, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Chem. Lett. 2005, 34, 392.
– reference: N. M. Tucker, A. L. Briseno, O. Acton, H. Yip, H. Ma, S. A. Jenekhe, Y. Xia, A. K. Jen, Appl. Mater. Interfaces 2013, 5, 2320.
– reference: X. K. Gao, Y. Wang, X. D. Yang, Y. Q. Liu, W. F. Qiu, W. P. Wu, H. J. Zhang, T. Qi, Y. Liu, K. Lu, C. Y. Du, Z. G. Shuai, G. Yu, D. B. Zhu, Adv. Mater. 2007, 19, 3037.
– reference: C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Synth. Met. 2003, 138, 475.
– reference: A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, J. Appl. Phys. 2000, 87, 4340.
– reference: M. R. Bryce, Adv. Mater. 1999, 11, 11.
– reference: L. Jiang, H. Dong, W. Hu, J. Mater. Chem. 2010, 20, 4994.
– reference: T. Takahashi, S. Tamura, Y. Akiyama, T. Kadoya, T. Kawamoto, T. Mori, Appl. Phys. Express 2012, 5, 061601.
– reference: S. Tamura, T. Kadoya, T. Mori, Appl. Phys. Lett. 2014, 105, 023301.
– reference: V. Lemaur, D. A. da Silva Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. van de Craats, K. Senthilkumar, L. D. A. Siebbeles, J. M. Warman, J.-L. Brédas, J. Cornil, J. Am. Chem. Soc. 2004, 126, 3271.
– reference: T. Siegrist, C. Kloc, J. H. Schön, B. Batlogg, R. C. Haddon, S. Berg, G. A. Thomas, Angew. Chem. 2001, 40, 1732.
– reference: T. Marszalek, a. Nosal, R. Pfattner, J. Jung, S. Kotarba, M. Mas-Torrent, B. Krause, J. Veciana, M. Gazicki-Lipman, C. Crickert, G. Schmidt, C. Rovira, J. Ulanski, Org. Electron. 2012, 13, 121.
– reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899.
– reference: J. Ferraris, D. O. Cowan, V. Walatka, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.
– reference: M. Mas-torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarre, M. Mas, E. Molins, J. Veciana, C. Rovira, J. Am. Chem. Soc. 2004, 126, 8546.
– reference: F. Otón, R. Pfattner, N. S. Oxtoby, M. Mas-Torrent, K. Wurst, X. Fontrodona, Y. Olivier, J. Cornil, J. Veciana, C. Rovira, J. Org. Chem. 2011, 76, 154.
– reference: H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, C. Kloc, CrystEngComm 2014, 16, 5968.
– reference: R. B. Campbell, J. M. Robertson, J. Trotter, Acta Crystallogr. 1961, 14, 705.
– reference: H. Li, X. Wang, Z. Li, Chin. Sci. Bull. 2012, 57, 4049.
– reference: T. Kakinuma, H. Kojima, T. Kawamoto, T. Mori, J. Mater. Chem. C 2013, 1, 2900.
– reference: F. Otón, R. Pfattner, E. Pavlica, Y. Olivier, G. Bratina, J. Cornil, J. Puigdollers, R. Alcubilla, X. Fontrodona, M. Mas-Torrent, J. Veciana, C. Rovira, CrystEngComm 2011, 13, 6597.
– reference: T. Kadoya, S. Tamura, T. Mori, J. Phys. Chem. C 2014, 118, 23139.
– reference: X. Gao, W. Wu, Y. Liu, W. Qiu, X. Sun, G. Yu, D. Zhu, Chem. Commun. 2006, 2750.
– reference: G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J.-L. Fave, F. Garnier, Chem. Mater. 1995, 7, 1337.
– reference: O. D. Jurchescu, D. A. Mourey, S. Subramanian, S. R. Parkin, B. M. Vogel, J. E. Anthony, T. N. Jackson, D. J. Gundlach, Phys. Rev. B 2009, 80, 085201.
– reference: A. M. Hiszpanski, R. M. Baur, B. Kim, N. J. Tremblay, C. Nuckolls, A. R. Woll, Y. Loo, J. Am. Chem. Soc. 2014, 136, 15749.
– reference: H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, Y. Liu, D. Zhu, Appl. Phys. Lett. 2007, 91, 123505.
– reference: T. Kakudate, N. Yoshimoto, Y. Saito, Appl. Phys. Lett. 2007, 90, 081903.
– reference: J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971.
– reference: E. Demiralp, W. A. Goddard, J. Phys. Chem. A 1997, 101, 8128.
– reference: Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, D. Zhu, J. Mater. Chem. 2010, 20, 1203.
– reference: L. Farina, A. Brillante, R. G. Della Valle, E. Venuti, M. Amboage, K. Syassen, Chem. Phys. Lett. 2003, 375, 490.
– reference: W. Zhang, W. Liang, Y. Zhao, J. Chem. Phys. 2010, 133, 024501.
– reference: H. Jiang, X. Yang, E. Wang, Y. Fu, Y. Liu, H. Li, Z. Cui, Y. Liu, W. Hu, Synth. Met. 2011, 161, 136.
– reference: C. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313.
– reference: T. Terauchi, S. Sumi, Y. Kobayashi, Y. Matsushita, A. Sato, Cryst. Growth Des. 2014, 14, 1412.
– reference: R. A. Marcus, Rev. Mod. Phys. 1993, 65, 599.
– reference: K. Omata, M. Mamada, J. Nishida, S. Tokito, Y. Yamashita, Bull. Chem. Soc. Jpn. 2010, 83, 575.
– reference: R. Pfattner, C. Moreno, C. Voz, R. Alcubilla, C. Rovira, J. Puigdollers, M. Mas-Torrent, Org. Electron. 2014, 15, 211.
– reference: C. Rovira, J. Veciana, N. Santalo, J. Tarres, J. Cirujeda, E. Molins, J. Llorca, E. Espinosa, J. Org. Chem. 1994, 59, 3307.
– reference: B. Noda, M. Katsuhara, I. Aoyagi, H. Nakajima, T. Mori, T. Taguchi, T. Kambayashi, M. Ofuji, Y. Takanishi, K. Ishikawa, H. Takezoe, H. Hosono, Proc. Int. Symp. Super-Functionality Org. Devices 2004, 1, 154.
– reference: K. Marumoto, S. Kuroda, T. Takenobu, Y. Iwasa, Phys. Rev. Lett. 2006, 97, 256603.
– reference: C. Moreno, R. Pfattner, M. Mas-Torrent, J. Puigdollers, S. T. Bromley, C. Rovira, J. Veciana, R. Alcubilla, J. Mater. Chem. 2012, 22, 345.
– reference: R. Pfattner, E. Pavlica, M. Jaggi, S.-X. Liu, S. Decurtins, G. Bratina, J. Veciana, M. Mas-Torrent, C. Rovira, J. Mater. Chem. C 2013, 1, 3985.
– reference: C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
– reference: A. Brillante, R. G. Della Valle, L. Farina, A. Girlando, M. Masino, E. Venuti, Chem. Phys. Lett. 2002, 357, 32.
– reference: E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
– reference: A. Brillante, I. Bilotti, F. Biscarini, R. G. Della Valle, E. Venuti, Chem. Phys. 2006, 328, 125.
– reference: M. Mas-Torrent, P. Hadley, X. Ribas, C. Rovira, Synth. Met. 2004, 146, 265.
– reference: Q. Wang, J. D. Wallis, Y. Wu, M. Pilkington, CrystEngComm 2014, 16, 10235.
– reference: J. Inoue, M. Kanno, M. Ashizawa, C. Seo, A. Tanioka, T. Mori, Chem. Lett. 2010, 39, 538.
– reference: H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305.
– reference: X. Gao, W. Qiu, Y. Liu, G. Yu, D. Zhu, Pure Appl. Chem. 2008, 80, 2405.
– reference: J.-F. Chang, T. Sakanoue, Y. Olivier, T. Uemura, M.-B. Dufourg-Madec, S. G. Yeates, J. Cornil, J. Takeya, A. Troisi, H. Sirringhaus, Phys. Rev. Lett. 2011, 107, 066601.
– reference: K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, T. Mori, Appl. Phys. Lett. 2008, 92, 023305.
– reference: L. Antolini, G. Horowitz, F. Kouki, F. Garnier, Adv. Mater. 1998, 10, 382.
– volume: 12
  start-page: 1125
  year: 1973
  publication-title: Solid State Commun.
– volume: 18
  start-page: 1363
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 3065
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 83
  start-page: 4782
  year: 2003
  publication-title: Appl. Phys. Lett.
– year: 1981
– volume: 284–285
  start-page: 589
  year: 2006
  publication-title: Colloids Surf., A
– volume: 92
  start-page: 023305
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 121
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 6382
  year: 2007
  publication-title: Chem. Mater.
– volume: 37
  start-page: 1088
  year: 2008
  publication-title: Chem. Lett.
– start-page: 889
  year: 1971
  publication-title: J. Chem. Soc. D
– volume: 112
  start-page: 2208
  year: 2012
  publication-title: Chem. Rev.
– volume: 34
  start-page: 392
  year: 2005
  publication-title: Chem. Lett.
– volume: 59
  start-page: 3307
  year: 1994
  publication-title: J. Org. Chem.
– volume: 5
  start-page: 3399
  year: 1999
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 2900
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 467
  year: 1968
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
– volume: 111
  start-page: 10110
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 2530
  year: 2012
  publication-title: Chem. Sci.
– volume: 40
  start-page: 1732
  year: 2001
  publication-title: Angew. Chem.
– volume: 6
  start-page: 5954
  year: 2015
  publication-title: Nat. Commun.
– volume: 124
  start-page: 7918
  year: 2002
  publication-title: J. Am. Chem. Soc.
– start-page: 2750
  year: 2006
  publication-title: Chem. Commun.
– volume: 25
  start-page: 313
  year: 2013
  publication-title: Adv. Mater.
– volume: 55
  start-page: 408
  year: 1993
  publication-title: Synth. Met.
– volume: 92
  start-page: 233306
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 1337
  year: 1995
  publication-title: Chem. Mater.
– volume: 328
  start-page: 125
  year: 2006
  publication-title: Chem. Phys.
– volume: 50
  start-page: 1941
  year: 1994
  publication-title: Acta Crystallogr. C
– volume: 136
  start-page: 17046
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 4065
  year: 2006
  publication-title: J. Phys. Chem. A
– volume: 80
  start-page: 085201
  year: 2009
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 415
  year: 2004
  publication-title: Mater. Sci.‐Pol.
– volume: 57
  start-page: 939
  year: 2001
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
– volume: 136
  start-page: 15749
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 014504
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 375
  start-page: 490
  year: 2003
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 2873
  year: 2014
  publication-title: RSC Adv.
– volume: 13
  start-page: 121
  year: 2012
  publication-title: Org. Electron.
– year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  start-page: 4994
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 154
  year: 2004
  publication-title: Proc. Int. Symp. Super‐Functionality Org. Devices
– volume: 13
  start-page: 14370
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 11
  year: 1999
  publication-title: Adv. Mater.
– volume: 18
  start-page: 699
  year: 1987
  publication-title: Synth. Met.
– volume: 37
  start-page: 827
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 11886
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 1412
  year: 2014
  publication-title: Cryst. Growth Des.
– volume: 9
  start-page: 143
  year: 2008
  publication-title: Org. Electron.
– volume: 19
  start-page: 5230
  year: 2007
  publication-title: Chem. Mater.
– volume: 83
  start-page: 575
  year: 2010
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 24
  start-page: 7211
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 3985
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 128
  start-page: 9598
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 433
  year: 2006
  publication-title: J. Mater. Chem.
– year: 1992
– volume: 107
  start-page: 1066
  year: 2007
  publication-title: Chem. Rev.
– volume: 161
  start-page: 136
  year: 2011
  publication-title: Synth. Met.
– volume: 18
  start-page: 424009
  year: 2007
  publication-title: Nanotechnology
– volume: 20
  start-page: 7136
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 43
  start-page: 075102
  year: 2010
  publication-title: J. Phys. D: Appl. Phys.
– volume: 22
  start-page: 345
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 379
  year: 1998
  publication-title: Adv. Mater.
– volume: 457
  start-page: 154
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 72
  start-page: 381
  year: 1989
  publication-title: Solid State Commun.
– volume: 9
  start-page: 1101
  year: 2008
  publication-title: Org. Electron.
– volume: 138
  start-page: 475
  year: 2003
  publication-title: Synth. Met.
– volume: 65
  start-page: 599
  year: 1993
  publication-title: Rev. Mod. Phys.
– volume: 19
  start-page: 1791
  year: 2007
  publication-title: Adv. Mater.
– volume: 87
  start-page: 4340
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 198
  start-page: 248
  year: 2014
  publication-title: Synth. Met.
– volume: 118
  start-page: 23139
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 91
  start-page: 123505
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 133
  start-page: 024501
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 1671
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 523
  start-page: 74
  year: 2012
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 4833
  year: 2011
  publication-title: Chem. Rev.
– volume: 10
  start-page: 382
  year: 1998
  publication-title: Adv. Mater.
– volume: 10
  start-page: 93
  year: 1998
  publication-title: Adv. Mater.
– volume: 90
  start-page: 081903
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 4198
  year: 2010
  publication-title: Adv. Mater.
– volume: 104
  start-page: 4971
  year: 2004
  publication-title: Chem. Rev.
– volume: 20
  start-page: 1203
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 6597
  year: 2011
  publication-title: CrystEngComm
– volume: 5
  start-page: 2320
  year: 2013
  publication-title: Appl. Mater. Interfaces
– volume: 23
  start-page: 851
  year: 2011
  publication-title: Chem. Mater.
– year: 1930
– volume: 10
  start-page: 1899
  year: 2008
  publication-title: CrystEngComm
– volume: 127
  start-page: 10142
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 705
  year: 1961
  publication-title: Acta Crystallogr.
– volume: 17
  start-page: 31
  year: 2005
  publication-title: Adv. Mater.
– volume: 20
  start-page: 5810
  year: 2010
  publication-title: J. Mater. Chem.
– year: 2004
– volume: 22
  start-page: 16011
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 16672
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 80
  start-page: 2405
  year: 2008
  publication-title: Pure Appl. Chem.
– volume: 5
  start-page: 061601
  year: 2012
  publication-title: Appl. Phys. Express
– volume: 15
  start-page: 1263
  year: 1986
  publication-title: Chem. Lett.
– volume: 6
  start-page: 1323
  year: 2014
  publication-title: Nanoscale
– volume: 105
  start-page: 023301
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 10235
  year: 2014
  publication-title: CrystEngComm
– volume: 15
  start-page: 211
  year: 2014
  publication-title: Org. Electron.
– volume: 118
  start-page: 807
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 1229
  year: 2012
  publication-title: Org. Electron.
– volume: 17
  start-page: 736
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 55
  start-page: 2176
  year: 2012
  publication-title: Sci. China Chem.
– year: 1960
– volume: 57
  start-page: 4049
  year: 2012
  publication-title: Chin. Sci. Bull.
– volume: 102
  start-page: 063305
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 1137
  year: 2011
  publication-title: Adv. Mater.
– volume: 39
  start-page: 538
  year: 2010
  publication-title: Chem. Lett.
– volume: 76
  start-page: 154
  year: 2011
  publication-title: J. Org. Chem.
– volume: 5
  start-page: 3573
  year: 2014
  publication-title: Nat. Commun.
– volume: 16
  start-page: 5968
  year: 2014
  publication-title: CrystEngComm
– volume: 126
  start-page: 3271
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 265
  year: 2004
  publication-title: Synth. Met.
– volume: 2
  start-page: 678
  year: 2003
  publication-title: Nat. Mater.
– volume: 2
  start-page: 2674
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 86
  start-page: 012110
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 95
  start-page: 948
  year: 1973
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 200
  year: 2009
  publication-title: Chem. Lett.
– volume: 357
  start-page: 32
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 107
  start-page: 066601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 86
  year: 2006
  publication-title: ChemPhysChem
– volume: 19
  start-page: 6548
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 126
  start-page: 8546
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 657
  year: 2009
  publication-title: ChemPhysChem
– volume: 149
  start-page: 219
  year: 2005
  publication-title: Synth. Met.
– volume: 50
  start-page: 1942
  year: 1994
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
– volume: 80
  start-page: 245305
  year: 2009
  publication-title: Phys. Rev. B
– volume: 160
  start-page: 2323
  year: 2010
  publication-title: Synth. Met.
– volume: 19
  start-page: 3037
  year: 2007
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5642
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 101
  start-page: 8128
  year: 1997
  publication-title: J. Phys. Chem. A
– volume: 126
  start-page: 6544
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 246602
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 2013
  start-page: 2440
  year: 2013
  publication-title: Eur. J. Inorg. Chem.
– volume: 6
  start-page: 1378
  year: 1994
  publication-title: Chem. Mater.
– volume: 97
  start-page: 256603
  year: 2006
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_11_54_1
  doi: 10.1016/j.orgel.2007.09.007
– ident: e_1_2_11_103_1
  doi: 10.1021/cm00044a041
– ident: e_1_2_11_107_1
  doi: 10.1039/b810993a
– volume-title: TTF Chemistry. Fundamentals and Applications of Tetrathiafulvalene
  year: 2004
  ident: e_1_2_11_20_1
– ident: e_1_2_11_104_1
  doi: 10.1016/j.orgel.2013.10.026
– ident: e_1_2_11_98_1
  doi: 10.1038/ncomms4573
– ident: e_1_2_11_127_1
  doi: 10.1103/PhysRevLett.97.256603
– ident: e_1_2_11_56_1
  doi: 10.1039/c2sc20303k
– ident: e_1_2_11_115_1
  doi: 10.1016/j.synthmet.2010.09.005
– ident: e_1_2_11_131_1
  doi: 10.1007/s11434-012-5222-z
– ident: e_1_2_11_140_1
  doi: 10.1002/adma.201201502
– ident: e_1_2_11_109_1
  doi: 10.1039/C4CE01686F
– ident: e_1_2_11_23_1
  doi: 10.1021/cm070956
– ident: e_1_2_11_67_1
  doi: 10.1016/j.synthmet.2014.10.039
– ident: e_1_2_11_84_1
  doi: 10.1002/1521-3773(20010504)40:9<1732::AID-ANIE17320>3.0.CO;2-7
– ident: e_1_2_11_40_1
  doi: 10.1039/c1cp21507h
– ident: e_1_2_11_116_1
  doi: 10.1002/adma.200602922
– ident: e_1_2_11_30_1
  doi: 10.1063/1.4792704
– ident: e_1_2_11_18_1
  doi: 10.1039/B510121B
– ident: e_1_2_11_19_1
  doi: 10.1002/(SICI)1521-4095(199901)11:1<11::AID-ADMA11>3.0.CO;2-3
– ident: e_1_2_11_145_1
  doi: 10.1039/C3TC32062F
– ident: e_1_2_11_50_1
  doi: 10.1021/cm702690w
– ident: e_1_2_11_11_1
  doi: 10.1021/cr100380z
– ident: e_1_2_11_65_1
  doi: 10.1002/adma.201001446
– ident: e_1_2_11_132_1
  doi: 10.1021/jp301536z
– ident: e_1_2_11_46_1
  doi: 10.1002/adfm.201202473
– ident: e_1_2_11_27_1
  doi: 10.1016/j.synthmet.2005.01.005
– ident: e_1_2_11_106_1
  doi: 10.1016/j.cplett.2011.12.026
– ident: e_1_2_11_96_1
  doi: 10.1021/ja507179d
– ident: e_1_2_11_135_1
  doi: 10.1021/ja0390956
– ident: e_1_2_11_111_1
  doi: 10.1021/cm1021867
– ident: e_1_2_11_38_1
  doi: 10.1039/c1ce05559c
– ident: e_1_2_11_71_1
  doi: 10.1016/j.colsurfa.2006.01.039
– ident: e_1_2_11_47_1
  doi: 10.1039/b907592e
– ident: e_1_2_11_22_1
  doi: 10.1039/b614393h
– ident: e_1_2_11_112_1
  doi: 10.1021/cr0501386
– ident: e_1_2_11_3_1
– ident: e_1_2_11_100_1
  doi: 10.1021/ja5091035
– ident: e_1_2_11_32_1
  doi: 10.1088/0022-3727/43/7/075102
– ident: e_1_2_11_52_1
– ident: e_1_2_11_31_1
  doi: 10.1063/1.4890237
– ident: e_1_2_11_43_1
  doi: 10.1246/cl.2010.538
– ident: e_1_2_11_21_1
  doi: 10.1039/c3ce41849a
– ident: e_1_2_11_39_1
  doi: 10.1143/APEX.5.061601
– ident: e_1_2_11_88_1
  doi: 10.1016/S0009-2614(03)00931-X
– ident: e_1_2_11_61_1
  doi: 10.1016/j.orgel.2008.08.011
– ident: e_1_2_11_53_1
  doi: 10.1063/1.3311554
– ident: e_1_2_11_5_1
  doi: 10.1016/0038-1098(89)90121-X
– ident: e_1_2_11_87_1
  doi: 10.1063/1.1527896
– ident: e_1_2_11_68_1
  doi: 10.1039/C3NR05680E
– ident: e_1_2_11_59_1
  doi: 10.1063/1.2784970
– ident: e_1_2_11_15_1
  doi: 10.1016/0038-1098(73)90127-0
– ident: e_1_2_11_10_1
  doi: 10.1103/PhysRevLett.104.246602
– ident: e_1_2_11_60_1
  doi: 10.1016/j.synthmet.2010.11.009
– ident: e_1_2_11_63_1
  doi: 10.1021/ja048342i
– ident: e_1_2_11_76_1
  doi: 10.1002/(SICI)1521-4095(199803)10:5<382::AID-ADMA382>3.0.CO;2-Y
– ident: e_1_2_11_143_1
  doi: 10.1063/1.373413
– ident: e_1_2_11_25_1
  doi: 10.1351/pac200880112405
– ident: e_1_2_11_26_1
  doi: 10.1246/cl.2008.1088
– ident: e_1_2_11_28_1
  doi: 10.1021/ja0630083
– ident: e_1_2_11_117_1
  doi: 10.1038/nmat978
– ident: e_1_2_11_55_1
  doi: 10.1039/b603632e
– ident: e_1_2_11_139_1
  doi: 10.1021/jp5070819
– ident: e_1_2_11_1_1
– ident: e_1_2_11_70_1
  doi: 10.1016/j.orgel.2011.10.001
– ident: e_1_2_11_72_1
  doi: 10.1246/cl.1986.1263
– ident: e_1_2_11_89_1
  doi: 10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V
– ident: e_1_2_11_4_1
– ident: e_1_2_11_12_1
  doi: 10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
– ident: e_1_2_11_7_1
– ident: e_1_2_11_114_1
  doi: 10.1039/c3tc30442f
– ident: e_1_2_11_134_1
  doi: 10.1007/s11426-012-4738-z
– ident: e_1_2_11_118_1
  doi: 10.1039/B713688A
– ident: e_1_2_11_82_1
  doi: 10.1002/cphc.200800771
– ident: e_1_2_11_69_1
  doi: 10.1021/am3025036
– ident: e_1_2_11_42_1
  doi: 10.1063/1.2834374
– ident: e_1_2_11_126_1
  doi: 10.1103/PhysRevLett.107.066601
– ident: e_1_2_11_128_1
  doi: 10.1021/jp9716546
– ident: e_1_2_11_77_1
  doi: 10.1016/j.chemphys.2006.06.018
– ident: e_1_2_11_110_1
  doi: 10.1002/adma.201003816
– ident: e_1_2_11_130_1
  doi: 10.1021/jp073148e
– ident: e_1_2_11_58_1
  doi: 10.1246/cl.2009.200
– ident: e_1_2_11_123_1
  doi: 10.1039/c0cp01016b
– ident: e_1_2_11_36_1
  doi: 10.1021/ja051755e
– volume-title: Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory
  year: 1992
  ident: e_1_2_11_17_1
– ident: e_1_2_11_85_1
  doi: 10.1016/S0009-2614(02)00441-4
– ident: e_1_2_11_124_1
  doi: 10.1016/j.orgel.2012.03.033
– ident: e_1_2_11_113_1
  doi: 10.1039/C3RA46784H
– ident: e_1_2_11_14_1
  doi: 10.1039/b925875b
– ident: e_1_2_11_48_1
  doi: 10.1063/1.1631751
– ident: e_1_2_11_57_1
  doi: 10.1039/C3TC32571G
– ident: e_1_2_11_125_1
  doi: 10.1021/jp055432g
– ident: e_1_2_11_92_1
  doi: 10.1107/S010827010100703X
– year: 2014
  ident: e_1_2_11_138_1
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_11_49_1
  doi: 10.1103/PhysRevB.80.245305
– ident: e_1_2_11_6_1
  doi: 10.1016/0379-6779(87)90964-7
– ident: e_1_2_11_9_1
– ident: e_1_2_11_37_1
  doi: 10.1002/ejic.201201362
– ident: e_1_2_11_66_1
  doi: 10.1039/c2jm32925e
– ident: e_1_2_11_45_1
  doi: 10.1246/bcsj.20090290
– ident: e_1_2_11_120_1
  doi: 10.1103/RevModPhys.65.599
– ident: e_1_2_11_91_1
  doi: 10.1002/adfm.200701019
– ident: e_1_2_11_64_1
  doi: 10.1016/j.synthmet.2004.08.023
– ident: e_1_2_11_80_1
  doi: 10.1107/S010827019301011X
– ident: e_1_2_11_144_1
  doi: 10.1039/B918874F
– ident: e_1_2_11_102_1
  doi: 10.1039/C29710000889
– ident: e_1_2_11_119_1
  doi: 10.1039/C1JM15037E
– ident: e_1_2_11_137_1
  doi: 10.1063/1.3456545
– ident: e_1_2_11_41_1
  doi: 10.1088/0957-4484/18/42/424009
– ident: e_1_2_11_79_1
  doi: 10.1021/cm00055a010
– ident: e_1_2_11_86_1
  doi: 10.1107/S0365110X61002163
– volume: 1
  start-page: 154
  year: 2004
  ident: e_1_2_11_34_1
  publication-title: Proc. Int. Symp. Super‐Functionality Org. Devices
– ident: e_1_2_11_2_1
– ident: e_1_2_11_62_1
  doi: 10.1063/1.1848179
– ident: e_1_2_11_75_1
  doi: 10.1021/cr100142w
– ident: e_1_2_11_24_1
  doi: 10.1039/B613093C
– ident: e_1_2_11_93_1
  doi: 10.1016/S0379-6779(02)00467-8
– ident: e_1_2_11_95_1
  doi: 10.1107/S0567740868002657
– ident: e_1_2_11_142_1
  doi: 10.1002/cphc.200500325
– ident: e_1_2_11_97_1
  doi: 10.1002/adfm.201401228
– ident: e_1_2_11_133_1
  doi: 10.1021/ja0175892
– ident: e_1_2_11_74_1
  doi: 10.1002/chem.201404508
– ident: e_1_2_11_8_1
– ident: e_1_2_11_141_1
  doi: 10.1039/c3tc30089g
– ident: e_1_2_11_35_1
  doi: 10.1063/1.2940593
– ident: e_1_2_11_121_1
  doi: 10.1021/cr040084k
– ident: e_1_2_11_44_1
  doi: 10.1002/adma.200700007
– ident: e_1_2_11_83_1
  doi: 10.1002/adma.200400570
– ident: e_1_2_11_108_1
  doi: 10.1021/cg401883g
– ident: e_1_2_11_81_1
  doi: 10.1016/0379-6779(93)90966-Z
– ident: e_1_2_11_94_1
  doi: 10.1002/(SICI)1521-4095(199803)10:5<379::AID-ADMA379>3.0.CO;2-A
– ident: e_1_2_11_73_1
  doi: 10.1002/chem.201304688
– ident: e_1_2_11_13_1
  doi: 10.1039/c0jm01154a
– ident: e_1_2_11_29_1
  doi: 10.1246/cl.2005.392
– ident: e_1_2_11_99_1
  doi: 10.1038/ncomms6954
– ident: e_1_2_11_33_1
  doi: 10.1021/ja051755e
– ident: e_1_2_11_101_1
  doi: 10.1103/PhysRevB.80.085201
– ident: e_1_2_11_105_1
  doi: 10.1021/jo00091a017
– ident: e_1_2_11_129_1
  doi: 10.1021/ja049762a
– volume: 22
  start-page: 415
  year: 2004
  ident: e_1_2_11_51_1
  publication-title: Mater. Sci.‐Pol.
– ident: e_1_2_11_136_1
  doi: 10.1016/j.cplett.2008.03.082
– ident: e_1_2_11_122_1
  doi: 10.1021/jo101817j
– ident: e_1_2_11_90_1
  doi: 10.1063/1.2709516
– ident: e_1_2_11_16_1
  doi: 10.1021/ja00784a066
– ident: e_1_2_11_78_1
  doi: 10.1107/S0108270194001149
SSID ssj0017734
Score 2.4223843
Snippet Tetrathiafulvalenes (TTFs) are an appealing class of organic small molecules giving rise to some of the highest performing active materials reported for...
SourceID csuc
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2256
SubjectTerms Compostos orgànics
Devices
Electronic structure
Electronics
Estructura electrònica
Field effect transistors
Order disorder
Organic compounds
organic field-effect transistors
Organic semiconductors
Semiconductor devices
Semiconductors orgànics
small molecules
structure-performance correlation
tetrathiafulvalenes
Transistors
Tuning
Title Tuning Crystal Ordering, Electronic Structure, and Morphology in Organic Semiconductors: Tetrathiafulvalenes as a Model Case
URI https://api.istex.fr/ark:/67375/WNG-7V9KQ36Z-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502446
https://www.proquest.com/docview/1808062327
https://recercat.cat/handle/2072/350208
Volume 26
WOSCitedRecordID wos000374258100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA4664M-eBfrjQiiIFs2SZtk6tsyu6OgO152Vod9CWma4rBDu7RbUfDHe07bqTMPIii00LRpKMm5fM1JvkPIs7FnljmZhyqLRBhz68JEah5aHnvheZ7rPtmEns3Gi0XyYWMXf8cPMUy4oWa09hoV3Kb13m_SUJvluJMcAA14KHWZ7AgQXjkiOwefpifvhkiC1l1kWXFc48UXa-JGJva2W9hyTCNXNw7wKnb19y3wuQlhWx80vfH_X3-TXO_xJ93vBOYWueSL2-TaBivhHfJz3uBkCZ1UPwA6ruh7ZOeEG7v0cMiZQ49b3tmm8rvUFhk9KmG82hl6uixot8ETKuHK-7JAStmyql_RuUcu3K9LmzcrkHA0s9TCQTEj24pOwKPeJSfTw_nkTdgnaQhdrMYq1C7nTlnJbCwE85qhf4uYY8k4lbGWUlupogzMSuwzlbnExzmGdZj2ScqsiO6RUVEW_j6hYF48_DBxZUUaR_A8SyLu8jTNPJoNGZBwPULG9QzmmEhjZTruZWGwV83QqwF5MdQ_77g7_ljzJQ64ASfjK2cvDJJuDwU8BdPCRBJTmgbkeSsWQ5u2OsPlcVqaL7PXRn9O3n6M1Kk5DsjTtdwYUFqMxNjCl01tOLJ5AvAUOiCiFZO_fKDZP5geDaUH__LSQ3IVrlXY8lQ-IiMQE_-YXHHfLpZ19aRXm18n8xb-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegQ2I88I0WPo2EQEKLZjux3fA2dStDa8vHulHxYjmOIyqqBKUrAok_nrskDesDQkJIyUMcx7Ls-8rd-XeEPOt7ZpmTeaiySIQxty5MpOah5bEXnue5botN6MmkP5sl79psQjwL0-BDdA435IxaXiODo0N67zdqqM1yPEoOFg2oKHWZbMVAS0DkWwcfhqejLpSgdRNaVhyTvPhsjdzIxN7mCBuaqeeWKwcGK6719w3r86INWyuh4Y3_MP2b5HprgdL9hmRukUu-uE2uXcAlvEN-TlfoLqGD6gcYjwv6FvE5oWGXHnZVc-hJjTy7qvwutUVGxyXsWO2jp_OCNkc8oRPm3pcFgsqW1fIVnXpEw_08tzBNoHEUtNTCRbEm24IOQKfeJafDw-ngKGzLNIQuVn0Vapdzp6xkNhaCec1Qw0XMsaSfylhLqa1UUQaCJfaZylzi4xwDO0z7JGVWRPdIrygLv0MoCBgPv0xcWZHGEbzPkoi7PE0zj4JDBiRcb5FxLYY5ltJYmAZ9WRhcVdOtakBedP2_Nugdf-z5EnfcgJrxlbPnBmG3uwe8BdPCRBKLmgbkeU0X3Zi2-oIJclqaj5PXRp8lx-8j9cmcBOTpmnAMsC3GYmzhy9XScMTzBNNT6ICImk7-MkGzfzAcd0_3_-WjJ-Tq0XQ8MqM3k-MHZBvaVVijVj4kPSAZ_4hccd_O58vqcctDvwDeixru
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB90T0Qf_BbrZwRRkCuXpE2y9e3YvVW5u_X09nTxJaRpiotLe3SvouAfb6bt1tsHEURoH5KmISTzlczkNwDPho4aakUeyiziYcyMDROhWGhY7Lhjea66ZBNqOh3O58lRF02Id2FafIj-wA05o5HXyODuNMt3fqOGmizHq-TeovEqSl6ErRgzyQxga_xhcnLQuxKUal3LkmGQF5uvkRsp39nsYUMzDeyqtt5gxbn-vmF9nrdhGyU0uf4fhn8DrnUWKNltSeYmXHDFLbh6DpfwNvyc1XhcQkbVD288Lsk7xOf0Fdtkr8-aQ44b5Nm6ctvEFBk5LP2KNWf0ZFGQ9oqnb4Sx92WBoLJltXpFZg7RcL8sTF4vPY2joCXGPwRzsi3JyOvUO3Ay2ZuN3oRdmobQxnIoQ2VzZqUR1MScU6coariIWpoMUxErIZQRMsq8YIldJjObuDhHxw5VLkmp4dFdGBRl4e4B8QLG-S0Tk4anceS_Z0nEbJ6mmUPBIQII10ukbYdhjqk0lrpFX-YaZ1X3sxrAi779aYve8ceWL3HFtVczrrLmTCPsdl_Al1PFdSQwqWkAzxu66Ps01VcMkFNCf5q-1upjsv8-kp_1cQBP14SjPduiL8YUrqxXmiGepzc9uQqAN3TylwHq3fHksC_d_5efnsDlo_FEH7yd7j-AK75ahg1o5UMYeIpxj-CS_Xa2WFWPOxb6BUDBGmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Crystal+Ordering%2C+Electronic+Structure%2C+and+Morphology+in+Organic+Semiconductors%3A+Tetrathiafulvalenes+as+a+Model+Case&rft.jtitle=Advanced+functional+materials&rft.au=Pfattner%2C+Raphael&rft.au=Bromley%2C+Stefan+T.&rft.au=Rovira%2C+Concepci%C3%B3&rft.au=Mas%E2%80%90Torrent%2C+Marta&rft.date=2016-04-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=14&rft.spage=2256&rft.epage=2275&rft_id=info:doi/10.1002%2Fadfm.201502446&rft.externalDBID=10.1002%252Fadfm.201502446&rft.externalDocID=ADFM201502446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon