Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla

Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of magnetic resonance imaging Ročník 34; číslo 1; s. 22 - 30
Hlavní autori: Qiao, Ye, Steinman, David A., Qin, Qin, Etesami, Maryam, Schär, Michael, Astor, Brad C., Wasserman, Bruce A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Predmet:
ISSN:1053-1807, 1522-2586, 1522-2586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D‐TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4‐mm isotropic‐resolution to explore the trade‐off between SNR and voxel volume. Wall signal‐to‐noise‐ratio (SNRwall), wall‐lumen contrast‐to‐noise‐ratio (CNRwall‐lumen), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D‐VISTA and 2D‐TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Results: Compared with 2D‐TSE measurements, 3D‐VISTA provided 58% and 74% improvement in SNRwall and CNRwall‐lumen, respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNRwall‐lumen using 0.4‐mm resolution VISTA decreased by 27%, compared with 0.5‐mm VISTA but with reduced partial‐volume‐based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. Conclusion: The 3D‐VISTA provides SNR‐efficient, highly reliable measurements of intracranial vessels at high isotropic‐resolution, enabling broad coverage in a clinically acceptable time. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.
AbstractList To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).PURPOSETo develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC).MATERIALS AND METHODSThirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC).Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent.RESULTSCompared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent.The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time.CONCLUSIONThe 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time.
Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D‐TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4‐mm isotropic‐resolution to explore the trade‐off between SNR and voxel volume. Wall signal‐to‐noise‐ratio (SNRwall), wall‐lumen contrast‐to‐noise‐ratio (CNRwall‐lumen), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D‐VISTA and 2D‐TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Results: Compared with 2D‐TSE measurements, 3D‐VISTA provided 58% and 74% improvement in SNRwall and CNRwall‐lumen, respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNRwall‐lumen using 0.4‐mm resolution VISTA decreased by 27%, compared with 0.5‐mm VISTA but with reduced partial‐volume‐based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. Conclusion: The 3D‐VISTA provides SNR‐efficient, highly reliable measurements of intracranial vessels at high isotropic‐resolution, enabling broad coverage in a clinically acceptable time. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.
To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time.
Author Qiao, Ye
Qin, Qin
Astor, Brad C.
Etesami, Maryam
Schär, Michael
Steinman, David A.
Wasserman, Bruce A.
Author_xml – sequence: 1
  givenname: Ye
  surname: Qiao
  fullname: Qiao, Ye
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 2
  givenname: David A.
  surname: Steinman
  fullname: Steinman, David A.
  organization: Biomedical Simulation Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
– sequence: 3
  givenname: Qin
  surname: Qin
  fullname: Qin, Qin
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 4
  givenname: Maryam
  surname: Etesami
  fullname: Etesami, Maryam
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 5
  givenname: Michael
  surname: Schär
  fullname: Schär, Michael
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 6
  givenname: Brad C.
  surname: Astor
  fullname: Astor, Brad C.
  organization: Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
– sequence: 7
  givenname: Bruce A.
  surname: Wasserman
  fullname: Wasserman, Bruce A.
  email: bwasser@jhmi.edu
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21698704$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtr3DAQhUVJaa4v_QFFb4WCt5IsWfZjCW26YXshTQn0RcjyeFeJbG0kmTT_vnI324dSimA0MN8ZOGeO0cHoR0DoJSULSgh7ezsEu2BMNOwZOqKCsYKJujrIPRFlQWsiD9FxjLeEkKbh4gU6ZLRqakn4EbpfjiloE_RotcM6JAhz86Cdw3bQazuu8RTnmjYBoOjsAGO0fszQxq432Eafgt9agwNE76aUZ7h12tzl6n2HP10tsU64XBB8DdHpU_S81y7C2dN_gr5_eH99_rFYfblYnr9bFYZXNSu4YD1nlQBmWk1ll-1xzeuq5JrosmnarpGQHyedkKxnjBpasbaRvBdQt7o8Qa93e7fB308QkxpsNOCcHsFPUdWylEQwIjP56omc2gE6tQ3ZeXhU-5QyQHaACT7GAL0yNunZac7OOkWJmg-h5kOo34fIkjd_SfZb_wnTHfxgHTz-h1SXOc29pthpbEzw849GhztVZWdC3Xy-UOLH1xUhl5X6Vv4CdNOn9Q
CitedBy_id crossref_primary_10_1007_s10072_015_2404_x
crossref_primary_10_1007_s10334_018_0730_8
crossref_primary_10_1111_jon_12315
crossref_primary_10_1002_brb3_103
crossref_primary_10_1002_brb3_1154
crossref_primary_10_1148_radiol_2021204096
crossref_primary_10_1002_jmri_25211
crossref_primary_10_1002_mp_15860
crossref_primary_10_1007_s00330_022_09207_2
crossref_primary_10_1097_RMR_0000000000000083
crossref_primary_10_1097_RMR_0000000000000080
crossref_primary_10_1038_s41598_022_10951_0
crossref_primary_10_4103_0366_6999_182826
crossref_primary_10_1002_mrm_26201
crossref_primary_10_1227_NEU_0b013e31827d1012
crossref_primary_10_1016_j_mric_2023_04_006
crossref_primary_10_1016_j_crad_2022_08_132
crossref_primary_10_1053_j_sult_2021_07_004
crossref_primary_10_1002_nbm_4567
crossref_primary_10_1007_s00330_015_3975_x
crossref_primary_10_3389_fnins_2022_888814
crossref_primary_10_1007_s00330_023_10539_w
crossref_primary_10_1161_STROKEAHA_114_007404
crossref_primary_10_1186_s40809_016_0021_6
crossref_primary_10_1016_j_jocmr_2024_101112
crossref_primary_10_1007_s00234_021_02891_9
crossref_primary_10_1007_s10439_013_0800_z
crossref_primary_10_1161_JAHA_118_009705
crossref_primary_10_1259_bjr_20180950
crossref_primary_10_1136_jnnp_2015_312020
crossref_primary_10_1016_j_atherosclerosis_2014_10_007
crossref_primary_10_1109_TBME_2019_2959030
crossref_primary_10_1148_radiol_11111261
crossref_primary_10_1002_jmri_23856
crossref_primary_10_1007_s00701_015_2526_1
crossref_primary_10_1212_WNL_0000000000003837
crossref_primary_10_1148_radiol_2017162096
crossref_primary_10_3389_fnins_2021_620172
crossref_primary_10_1007_s00415_022_11315_4
crossref_primary_10_1109_TBME_2019_2896972
crossref_primary_10_1016_j_mric_2020_09_003
crossref_primary_10_1007_s00330_022_09218_z
crossref_primary_10_1371_journal_pone_0220603
crossref_primary_10_1002_jmri_26553
crossref_primary_10_3171_2016_12_JNS162262
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107293
crossref_primary_10_1136_neurintsurg_2015_012127
crossref_primary_10_1007_s00330_017_4860_6
crossref_primary_10_3389_fneur_2023_1165453
crossref_primary_10_1016_j_mri_2023_07_008
crossref_primary_10_1016_j_jocn_2023_10_008
crossref_primary_10_1016_j_mri_2015_10_002
crossref_primary_10_3389_fneur_2021_693397
crossref_primary_10_1016_j_ejrad_2019_07_032
crossref_primary_10_1111_ene_16422
crossref_primary_10_1016_j_nic_2024_01_003
crossref_primary_10_1002_jmri_28087
crossref_primary_10_1148_radiol_13112310
crossref_primary_10_1007_s00330_016_4525_x
crossref_primary_10_1002_jmri_27550
crossref_primary_10_1016_j_nic_2021_01_005
crossref_primary_10_1007_s00330_021_08331_9
crossref_primary_10_1016_j_ejrad_2016_01_014
crossref_primary_10_1016_j_ejrad_2023_111045
crossref_primary_10_3389_fneur_2025_1583857
crossref_primary_10_1002_mrm_28777
crossref_primary_10_3389_fnins_2021_665076
crossref_primary_10_1007_s00330_013_2905_z
crossref_primary_10_1007_s00330_019_06366_7
crossref_primary_10_1016_j_mri_2021_10_026
crossref_primary_10_1097_RLI_0000000000000142
crossref_primary_10_1186_s12968_016_0237_2
crossref_primary_10_1371_journal_pone_0160781
crossref_primary_10_1016_j_braindev_2022_01_003
crossref_primary_10_1148_radiol_2020190643
crossref_primary_10_3389_fneur_2023_1264791
crossref_primary_10_1177_1747493019840942
crossref_primary_10_1016_j_acra_2024_03_041
crossref_primary_10_1177_1756286419833295
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107477
crossref_primary_10_1186_s12968_016_0309_3
crossref_primary_10_1161_CIRCULATIONAHA_113_006919
crossref_primary_10_1016_j_ejrad_2016_09_006
crossref_primary_10_1161_STROKEAHA_117_017922
crossref_primary_10_1016_j_crad_2017_11_017
crossref_primary_10_1002_mrm_29647
crossref_primary_10_3389_fnagi_2021_706544
crossref_primary_10_23736_S1824_4785_18_03036_4
crossref_primary_10_1177_19714009211026920
crossref_primary_10_3389_fimmu_2021_692222
crossref_primary_10_1017_cjn_2020_177
crossref_primary_10_1136_practneurol_2020_002806
crossref_primary_10_1002_jmri_25611
crossref_primary_10_1002_jmri_26028
crossref_primary_10_1007_s00062_019_00867_0
crossref_primary_10_3171_2017_1_FOCUS16492
crossref_primary_10_3348_kjr_2017_18_2_383
crossref_primary_10_1016_j_cmpb_2025_108881
crossref_primary_10_4103_0366_6999_158314
crossref_primary_10_1007_s00234_019_02190_4
crossref_primary_10_1016_j_mri_2021_08_004
crossref_primary_10_1212_WNL_0000000000000868
crossref_primary_10_1186_s40809_016_0014_5
crossref_primary_10_1016_j_yacr_2019_05_005
crossref_primary_10_1002_jmri_25296
crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_08_013
crossref_primary_10_1161_STROKEAHA_115_009955
crossref_primary_10_3171_2019_9_FOCUS19489
crossref_primary_10_1016_j_neuroimage_2023_120504
crossref_primary_10_1016_j_neuroimage_2019_05_065
crossref_primary_10_1002_jmri_27587
crossref_primary_10_1002_mrm_26152
crossref_primary_10_1007_s00234_017_1925_9
crossref_primary_10_1161_STROKEAHA_115_011369
crossref_primary_10_1002_rcs_1487
crossref_primary_10_1161_STROKEAHA_116_013007
crossref_primary_10_1177_0961203315588577
crossref_primary_10_1016_j_jocn_2018_10_145
crossref_primary_10_1016_j_atherosclerosis_2018_04_023
crossref_primary_10_1016_j_mri_2021_01_004
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108015
crossref_primary_10_1007_s00234_025_03642_w
crossref_primary_10_1007_s00062_015_0484_x
crossref_primary_10_1111_jon_12719
crossref_primary_10_1259_bjr_20210031
crossref_primary_10_1016_j_wneu_2019_02_250
crossref_primary_10_1002_jmri_24542
crossref_primary_10_1177_0284185119826538
crossref_primary_10_1007_s00330_018_5395_1
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106026
crossref_primary_10_3390_jcdd11080249
crossref_primary_10_1007_s10334_017_0644_x
crossref_primary_10_1002_mrm_29217
crossref_primary_10_1177_15910199221133170
crossref_primary_10_3390_jcm10091850
crossref_primary_10_1016_j_ejrad_2020_108921
crossref_primary_10_1007_s10334_016_0531_x
crossref_primary_10_1542_peds_2015_2143
crossref_primary_10_1007_s00330_018_5323_4
crossref_primary_10_1161_STROKEAHA_116_014795
crossref_primary_10_1097_RLI_0000000000000595
crossref_primary_10_1002_nbm_4820
crossref_primary_10_1007_s00330_016_4483_3
crossref_primary_10_1016_j_jocmr_2025_101918
crossref_primary_10_1016_j_wneu_2019_06_084
crossref_primary_10_1016_j_media_2020_101818
crossref_primary_10_1007_s00062_021_01018_0
crossref_primary_10_1007_s00330_022_09010_z
crossref_primary_10_1148_radiol_2016151124
crossref_primary_10_1161_STROKEAHA_117_020046
crossref_primary_10_1186_s12968_015_0143_z
crossref_primary_10_1016_j_crad_2015_11_012
crossref_primary_10_1007_s10072_020_04562_8
crossref_primary_10_1002_mp_16074
crossref_primary_10_1186_s12883_018_1214_1
crossref_primary_10_1016_j_jneuroim_2023_578032
crossref_primary_10_1016_j_clineuro_2014_08_010
crossref_primary_10_1161_STROKEAHA_119_026497
crossref_primary_10_1002_jmri_27399
crossref_primary_10_1002_nbm_3322
crossref_primary_10_1016_j_neurad_2017_11_006
crossref_primary_10_1002_jmri_28923
crossref_primary_10_1016_j_ejrad_2019_108644
crossref_primary_10_1177_0300060520977388
crossref_primary_10_3390_brainsci13020217
crossref_primary_10_3389_fnagi_2022_785661
crossref_primary_10_3348_kjr_2018_0424
crossref_primary_10_1088_2057_1976_aa9a09
crossref_primary_10_1177_1591019916653252
crossref_primary_10_1259_bjr_20220686
crossref_primary_10_1002_jmri_24430
crossref_primary_10_3171_2019_4_FOCUS19235
crossref_primary_10_1371_journal_pone_0213514
crossref_primary_10_3389_fneur_2021_637556
crossref_primary_10_1136_neurintsurg_2022_018912
crossref_primary_10_1016_j_mri_2019_07_001
crossref_primary_10_1002_mrm_25667
crossref_primary_10_1212_WNL_0000000000209250
crossref_primary_10_1016_j_neurad_2020_01_085
crossref_primary_10_1002_jmri_28234
crossref_primary_10_1002_mrm_25785
crossref_primary_10_1016_j_mri_2015_06_006
crossref_primary_10_1016_j_mri_2019_04_016
crossref_primary_10_1186_s12968_018_0453_z
crossref_primary_10_1016_j_atherosclerosis_2016_03_033
crossref_primary_10_1148_radiol_13122812
crossref_primary_10_1038_s41598_020_69932_w
crossref_primary_10_1002_jmri_24222
crossref_primary_10_1186_s12968_020_0604_x
crossref_primary_10_1371_journal_pone_0166929
crossref_primary_10_1109_TMI_2012_2216542
crossref_primary_10_1007_s00062_019_00819_8
crossref_primary_10_1016_j_nic_2012_02_006
crossref_primary_10_3348_kjr_2020_0128
crossref_primary_10_1161_SVIN_122_000757
crossref_primary_10_1007_s00062_017_0637_1
crossref_primary_10_1007_s12028_018_0534_8
crossref_primary_10_1002_jmri_26750
crossref_primary_10_1007_s10072_025_08366_6
crossref_primary_10_4103_0366_6999_157633
crossref_primary_10_1177_02841851231205487
crossref_primary_10_1007_s10334_017_0667_3
crossref_primary_10_1155_2015_540217
crossref_primary_10_1002_mrm_27747
crossref_primary_10_1016_j_mri_2024_02_001
crossref_primary_10_1007_s00701_013_1919_2
Cites_doi 10.1097/RLI.0b013e3181b4c218
10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
10.1161/STROKEAHA.107.496513
10.1016/j.atherosclerosis.2010.06.035
10.1002/jmri.22058
10.1111/j.1552-6569.2008.00272.x
10.1002/mrm.1910400216
10.1002/jmri.20356
10.1016/j.mri.2007.06.004
10.1007/s11910-008-0028-8
10.1148/radiol.2431060310
10.1111/j.1552-6569.2009.00414.x
10.1002/mrm.21680
10.1002/mrm.20863
10.1259/bjr/74101656
10.1148/radiol.2281020484
10.1016/j.atherosclerosis.2008.10.019
10.1002/jmri.10294
10.1002/mrm.21758
10.1161/01.STR.27.11.1974
10.1007/s10072-007-0748-6
10.1161/hc0202.102121
10.1148/radiol.2232010659
10.1002/jmri.22043
10.1161/01.STR.0000185726.83152.00
10.1148/radiology.181.3.1947077
10.1002/sim.1253
10.1161/01.STR.26.1.14
10.1016/0003-4975(94)01037-D
10.1212/01.wnl.0000342470.69739.b3
10.1161/ATVB.15v10.1533
10.1002/mrm.10391
10.1016/S0140-6736(86)90837-8
10.1212/01.WNL.0000150543.61244.06
10.1159/000209238
10.1002/mrm.22510
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.22592
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 30
ExternalDocumentID 21698704
10_1002_jmri_22592
JMRI22592
ark_67375_WNG_5ZPL00J6_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Yousem Family Research Fund
– fundername: NHLBI NIH HHS
  grantid: K99 HL106232
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4682-452f4265e2cba17d2594a48634a0a399bd97e7e740d572f221c162b974f5e8ba3
IEDL.DBID WIN
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292421800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-1807
1522-2586
IngestDate Thu Oct 02 12:00:35 EDT 2025
Mon Jul 21 05:59:29 EDT 2025
Sat Nov 29 02:57:31 EST 2025
Tue Nov 18 21:39:01 EST 2025
Wed Jan 22 16:28:17 EST 2025
Sun Sep 21 06:15:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4682-452f4265e2cba17d2594a48634a0a399bd97e7e740d572f221c162b974f5e8ba3
Notes ArticleID:JMRI22592
istex:AFDBBB0D2D5F8A9970D6A17B5DF63F539AF7B225
Yousem Family Research Fund
ark:/67375/WNG-5ZPL00J6-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22592
PMID 21698704
PQID 873705207
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_873705207
pubmed_primary_21698704
crossref_citationtrail_10_1002_jmri_22592
crossref_primary_10_1002_jmri_22592
wiley_primary_10_1002_jmri_22592_JMRI22592
istex_primary_ark_67375_WNG_5ZPL00J6_S
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Zhang Z, Fan Z, Carroll TJ, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009; 44: 619-626.
Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181-185.
Bernstein MA, King KE, Zhou XJ, Fong W. Handbook of MRI pulse sequences. (equation 32, 36). London: Academic Press; 2004. p 609.
Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler thromb Vasc Biol 1995; 15: 1533-1542.
Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55: 1030-1037.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York, NY: John Wiley and Sons; 218.
Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 2010; 83: e182-e184.
Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009; 72: 627-634.
Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996; 27: 1974-1980.
Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003; 49: 527-535.
Klein IF, Lavallee PC, Schouman-Claeys E, Amarenco P. High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005; 64: 551-552.
Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2010.
Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60: 640-649.
Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009; 19( Suppl 1): 1S-10S.
Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999; 41: 575-590.
Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998; 40: 298-310.
Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010; 31: 645-654.
Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med 2002; 21: 3431-3446.
Zhang S, Cai J, Luo Y, et al. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology 2003; 228: 200-205.
Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 2009; 204: 447-452.
Sacco RL, Kargman DE, Gu Q, Zamanillo MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 1995; 26: 14-20.
Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008; 39: 1142-1147.
Storey P, Atanasova IP, Lim RP, et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med 2010; 64: 1098-1108.
Antiga L, Wasserman BA, Steinman DA. On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med 2008; 60: 1020-1028.
Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181: 655-660.
Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. J Magn Reson Imaging 2010; 31: 406-415.
Cerrato P, Grasso M, Lentini A, et al. Atherosclerotic adult Moya-Moya disease in a patient with hyperhomocysteinaemia. Neurol Sci 2007; 28: 45-47.
Ryu CW, Jahng GH, Kim EJ, Choi WS, Yang DM. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis 2009; 27: 433-442.
Caplan LR. Intracranial large artery occlusive disease. Curr Neurol Neurosci Rep 2008; 8: 177-181.
Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003; 17: 572-580.
Wasserman BA, Smith WI, Trout HH III, Cannon RO III, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002; 223: 566-573.
Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22.
Greenman RL, Wang X, Ngo L, Marquis RP, Farrar N. An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength. Magn Reson Imaging 2008; 26: 246-253.
Ashley WW Jr, Zipfel GJ, Moran CJ, Zheng J, Derdeyn CP. Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging. J Neuroimaging 2009; 19: 381-384.
McRobbie RW, Moore EA, Graves MJ. MRI from picture to proton. New York: Cambridge; 2003.
Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology 2007; 243: 220-228.
Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 2010; 212: 507-511.
Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995; 59: 1594-1603.
Wasserman BA, Wityk RJ, Trout HH III, Virmani R. Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 2005; 36: 2504-2513.
2009; 44
2010; 31
1995; 15
2010
1995; 59
2006; 55
2007; 243
2008; 39
2005; 64
2008; 8
2003; 17
1999; 41
2004
2003
1998; 40
2009; 27
2005; 22
2010; 83
2007; 28
1986; 1
2010; 64
2003; 228
1995; 26
2009; 72
2002; 223
1991; 181
2002; 21
2010; 212
2008; 26
2002; 105
2003; 49
2009; 19
1996; 27
2008; 60
2009; 204
2005; 36
e_1_2_6_31_2
Fleiss J (e_1_2_6_29_2)
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
McRobbie RW (e_1_2_6_33_2) 2003
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Bernstein MA (e_1_2_6_30_2) 2004
e_1_2_6_41_2
e_1_2_6_40_2
Balu N (e_1_2_6_39_2) 2010
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181: 655-660.
– reference: Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995; 59: 1594-1603.
– reference: Greenman RL, Wang X, Ngo L, Marquis RP, Farrar N. An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength. Magn Reson Imaging 2008; 26: 246-253.
– reference: Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009; 72: 627-634.
– reference: Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 2010; 83: e182-e184.
– reference: Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60: 640-649.
– reference: Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med 2002; 21: 3431-3446.
– reference: Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2010.
– reference: Antiga L, Wasserman BA, Steinman DA. On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med 2008; 60: 1020-1028.
– reference: Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. J Magn Reson Imaging 2010; 31: 406-415.
– reference: Klein IF, Lavallee PC, Schouman-Claeys E, Amarenco P. High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005; 64: 551-552.
– reference: Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010; 31: 645-654.
– reference: Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology 2007; 243: 220-228.
– reference: Sacco RL, Kargman DE, Gu Q, Zamanillo MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 1995; 26: 14-20.
– reference: Bernstein MA, King KE, Zhou XJ, Fong W. Handbook of MRI pulse sequences. (equation 32, 36). London: Academic Press; 2004. p 609.
– reference: McRobbie RW, Moore EA, Graves MJ. MRI from picture to proton. New York: Cambridge; 2003.
– reference: Wasserman BA, Wityk RJ, Trout HH III, Virmani R. Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 2005; 36: 2504-2513.
– reference: Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 2010; 212: 507-511.
– reference: Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003; 17: 572-580.
– reference: Caplan LR. Intracranial large artery occlusive disease. Curr Neurol Neurosci Rep 2008; 8: 177-181.
– reference: Ashley WW Jr, Zipfel GJ, Moran CJ, Zheng J, Derdeyn CP. Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging. J Neuroimaging 2009; 19: 381-384.
– reference: Wasserman BA, Smith WI, Trout HH III, Cannon RO III, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002; 223: 566-573.
– reference: Zhang Z, Fan Z, Carroll TJ, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009; 44: 619-626.
– reference: Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003; 49: 527-535.
– reference: Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler thromb Vasc Biol 1995; 15: 1533-1542.
– reference: Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22.
– reference: Storey P, Atanasova IP, Lim RP, et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med 2010; 64: 1098-1108.
– reference: Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York, NY: John Wiley and Sons; 218.
– reference: Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008; 39: 1142-1147.
– reference: Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181-185.
– reference: Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55: 1030-1037.
– reference: Cerrato P, Grasso M, Lentini A, et al. Atherosclerotic adult Moya-Moya disease in a patient with hyperhomocysteinaemia. Neurol Sci 2007; 28: 45-47.
– reference: Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
– reference: Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996; 27: 1974-1980.
– reference: Zhang S, Cai J, Luo Y, et al. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology 2003; 228: 200-205.
– reference: Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 2009; 204: 447-452.
– reference: Ryu CW, Jahng GH, Kim EJ, Choi WS, Yang DM. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis 2009; 27: 433-442.
– reference: Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999; 41: 575-590.
– reference: Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009; 19( Suppl 1): 1S-10S.
– reference: Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998; 40: 298-310.
– volume: 72
  start-page: 627
  year: 2009
  end-page: 634
  article-title: Intracranial arterial wall imaging using high‐resolution 3‐tesla contrast‐enhanced MRI
  publication-title: Neurology
– volume: 212
  start-page: 507
  year: 2010
  end-page: 511
  article-title: In vivo high‐resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis
  publication-title: Atherosclerosis
– volume: 40
  start-page: 298
  year: 1998
  end-page: 310
  article-title: Intracranial black‐blood MR angiography with high‐resolution 3D fast spin echo
  publication-title: Magn Reson Med
– volume: 36
  start-page: 2504
  year: 2005
  end-page: 2513
  article-title: Low‐grade carotid stenosis: looking beyond the lumen with MRI
  publication-title: Stroke
– volume: 19
  start-page: 1S
  issue: Suppl 1
  year: 2009
  end-page: 10S
  article-title: Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results
  publication-title: J Neuroimaging
– volume: 60
  start-page: 1020
  year: 2008
  end-page: 1028
  article-title: On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging
  publication-title: Magn Reson Med
– volume: 41
  start-page: 575
  year: 1999
  end-page: 590
  article-title: Voxel sensitivity function description of flow‐induced signal loss in MR imaging: implications for black‐blood MR angiography with turbo spin‐echo sequences
  publication-title: Magn Reson Med
– volume: 22
  start-page: 13
  year: 2005
  end-page: 22
  article-title: Routine clinical brain MRI sequences for use at 3.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 1533
  year: 1995
  end-page: 1542
  article-title: T2‐weighted contrast for NMR characterization of human atherosclerosis
  publication-title: Arterioscler thromb Vasc Biol
– volume: 17
  start-page: 572
  year: 2003
  end-page: 580
  article-title: Volume‐selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement
  publication-title: J Magn Reson Imaging
– year: 2010
  article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI
  publication-title: Magn Reson Med
– volume: 228
  start-page: 200
  year: 2003
  end-page: 205
  article-title: Measurement of carotid wall volume and maximum area with contrast‐enhanced 3D MR imaging: initial observations
  publication-title: Radiology
– volume: 27
  start-page: 1974
  year: 1996
  end-page: 1980
  article-title: Race and sex differences in the distribution of cerebral atherosclerosis
  publication-title: Stroke
– volume: 55
  start-page: 1030
  year: 2006
  end-page: 1037
  article-title: Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast
  publication-title: Magn Reson Med
– year: 2003
– volume: 27
  start-page: 433
  year: 2009
  end-page: 442
  article-title: High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla
  publication-title: Cerebrovasc Dis
– volume: 49
  start-page: 527
  year: 2003
  end-page: 535
  article-title: Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS)
  publication-title: Magn Reson Med
– volume: 31
  start-page: 645
  year: 2010
  end-page: 654
  article-title: Carotid arterial wall MRI at 3T using 3D variable‐flip‐angle turbo spin‐echo (TSE) with flow‐sensitive dephasing (FSD)
  publication-title: J Magn Reson Imaging
– start-page: 218
– volume: 1
  start-page: 307
  year: 1986
  end-page: 310
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 204
  start-page: 447
  year: 2009
  end-page: 452
  article-title: Atherosclerosis of middle cerebral artery: evaluation with high‐resolution MR imaging at 3T
  publication-title: Atherosclerosis
– volume: 59
  start-page: 1594
  year: 1995
  end-page: 1603
  article-title: Pressure‐induced arterial wall stress and atherosclerosis
  publication-title: Ann Thorac Surg
– volume: 223
  start-page: 566
  year: 2002
  end-page: 573
  article-title: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium‐enhanced double‐oblique MR imaging initial results
  publication-title: Radiology
– volume: 105
  start-page: 181
  year: 2002
  end-page: 185
  article-title: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke
  publication-title: Circulation
– volume: 31
  start-page: 406
  year: 2010
  end-page: 415
  article-title: MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics
  publication-title: J Magn Reson Imaging
– volume: 243
  start-page: 220
  year: 2007
  end-page: 228
  article-title: Three‐dimensional black‐blood MR imaging of carotid arteries with segmented steady‐state free precession: initial experience
  publication-title: Radiology
– volume: 39
  start-page: 1142
  year: 2008
  end-page: 1147
  article-title: Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke
  publication-title: Stroke
– volume: 19
  start-page: 381
  year: 2009
  end-page: 384
  article-title: Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging
  publication-title: J Neuroimaging
– volume: 26
  start-page: 14
  year: 1995
  end-page: 20
  article-title: Race‐ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study
  publication-title: Stroke
– volume: 8
  start-page: 177
  year: 2008
  end-page: 181
  article-title: Intracranial large artery occlusive disease
  publication-title: Curr Neurol Neurosci Rep
– volume: 64
  start-page: 1098
  year: 2010
  end-page: 1108
  article-title: Tailoring the flow sensitivity of fast spin‐echo sequences for noncontrast peripheral MR angiography
  publication-title: Magn Reson Med
– volume: 60
  start-page: 640
  year: 2008
  end-page: 649
  article-title: Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo
  publication-title: Magn Reson Med
– volume: 64
  start-page: 551
  year: 2005
  end-page: 552
  article-title: High‐resolution MRI identifies basilar artery plaques in paramedian pontine infarct
  publication-title: Neurology
– volume: 83
  start-page: e182
  year: 2010
  end-page: e184
  article-title: High‐resolution black‐blood contrast‐enhanced T1 weighted images for the diagnosis and follow‐up of intracranial arteritis
  publication-title: Br J Radiol
– volume: 44
  start-page: 619
  year: 2009
  end-page: 626
  article-title: Three‐dimensional T2‐weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla
  publication-title: Invest Radiol
– volume: 26
  start-page: 246
  year: 2008
  end-page: 253
  article-title: An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength
  publication-title: Magn Reson Imaging
– volume: 181
  start-page: 655
  year: 1991
  end-page: 660
  article-title: Fast selective black blood MR imaging
  publication-title: Radiology
– start-page: 609
  year: 2004
– volume: 21
  start-page: 3431
  year: 2002
  end-page: 3446
  article-title: Assessing intrarater, interrater and test‐retest reliability of continuous measurements
  publication-title: Stat Med
– volume: 28
  start-page: 45
  year: 2007
  end-page: 47
  article-title: Atherosclerotic adult Moya‐Moya disease in a patient with hyperhomocysteinaemia
  publication-title: Neurol Sci
– ident: e_1_2_6_21_2
  doi: 10.1097/RLI.0b013e3181b4c218
– ident: e_1_2_6_23_2
  doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
– volume-title: MRI from picture to proton
  year: 2003
  ident: e_1_2_6_33_2
– ident: e_1_2_6_3_2
  doi: 10.1161/STROKEAHA.107.496513
– ident: e_1_2_6_7_2
  doi: 10.1016/j.atherosclerosis.2010.06.035
– ident: e_1_2_6_20_2
  doi: 10.1002/jmri.22058
– ident: e_1_2_6_36_2
  doi: 10.1111/j.1552-6569.2008.00272.x
– ident: e_1_2_6_17_2
  doi: 10.1002/mrm.1910400216
– ident: e_1_2_6_31_2
  doi: 10.1002/jmri.20356
– ident: e_1_2_6_25_2
  doi: 10.1016/j.mri.2007.06.004
– ident: e_1_2_6_13_2
  doi: 10.1007/s11910-008-0028-8
– ident: e_1_2_6_38_2
  doi: 10.1148/radiol.2431060310
– ident: e_1_2_6_35_2
  doi: 10.1111/j.1552-6569.2009.00414.x
– ident: e_1_2_6_18_2
  doi: 10.1002/mrm.21680
– ident: e_1_2_6_19_2
  doi: 10.1002/mrm.20863
– ident: e_1_2_6_11_2
  doi: 10.1259/bjr/74101656
– ident: e_1_2_6_40_2
  doi: 10.1148/radiol.2281020484
– ident: e_1_2_6_10_2
  doi: 10.1016/j.atherosclerosis.2008.10.019
– ident: e_1_2_6_14_2
  doi: 10.1002/jmri.10294
– start-page: 609
  volume-title: Handbook of MRI pulse sequences. (equation 32, 36)
  year: 2004
  ident: e_1_2_6_30_2
– ident: e_1_2_6_12_2
  doi: 10.1002/mrm.21758
– ident: e_1_2_6_34_2
  doi: 10.1161/01.STR.27.11.1974
– ident: e_1_2_6_26_2
  doi: 10.1007/s10072-007-0748-6
– ident: e_1_2_6_5_2
  doi: 10.1161/hc0202.102121
– ident: e_1_2_6_16_2
  doi: 10.1148/radiol.2232010659
– ident: e_1_2_6_6_2
  doi: 10.1002/jmri.22043
– ident: e_1_2_6_4_2
  doi: 10.1161/01.STR.0000185726.83152.00
– ident: e_1_2_6_15_2
  doi: 10.1148/radiology.181.3.1947077
– ident: e_1_2_6_28_2
  doi: 10.1002/sim.1253
– ident: e_1_2_6_2_2
  doi: 10.1161/01.STR.26.1.14
– ident: e_1_2_6_41_2
  doi: 10.1016/0003-4975(94)01037-D
– ident: e_1_2_6_8_2
  doi: 10.1212/01.wnl.0000342470.69739.b3
– ident: e_1_2_6_32_2
  doi: 10.1161/ATVB.15v10.1533
– ident: e_1_2_6_22_2
  doi: 10.1002/mrm.10391
– start-page: 218
  volume-title: Statistical methods for rates and proportions
  ident: e_1_2_6_29_2
– ident: e_1_2_6_27_2
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_2_6_37_2
  doi: 10.1212/01.WNL.0000150543.61244.06
– ident: e_1_2_6_9_2
  doi: 10.1159/000209238
– ident: e_1_2_6_24_2
  doi: 10.1002/mrm.22510
– year: 2010
  ident: e_1_2_6_39_2
  article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI
  publication-title: Magn Reson Med
SSID ssj0009945
Score 2.4791505
Snippet Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers...
To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial...
To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).PURPOSETo develop a high isotropic-resolution sequence to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Adult
Aged
Aged, 80 and over
Arteries - pathology
Brain - pathology
Cerebrospinal Fluid
Female
Fourier Analysis
Humans
Imaging, Three-Dimensional
intracranial
isotropic
Magnetic Resonance Imaging - methods
Male
Middle Aged
MRI
plaque
Reproducibility of Results
Stroke - pathology
vessel wall
Title Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla
URI https://api.istex.fr/ark:/67375/WNG-5ZPL00J6-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22592
https://www.ncbi.nlm.nih.gov/pubmed/21698704
https://www.proquest.com/docview/873705207
Volume 34
WOSCitedRecordID wos000292421800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 20201207
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qK-JL63dj9VhQBIW0yWaTTcAXUU-vtEepLT36smySjaS93pUkVR_9E_wb_Uuc2eRyFIogkpd9mIRkPnY-dvIbgJdxEIjE-NrFWCh1RegVrhZ57nL09bL10qkdNiHH43gySQ5W4O3iX5gWH6IvuJFl2P2aDFyn9c4SNPTsoiq3URsT2oB94dP4gpPReIm4m9gJxRg_BK4fe7LHJuU7y1uveaM1YuyPm0LN65GrdT3Djf976Xuw3oWc7F2rI_dhxcwewJ397lD9IdQjKvBm6LRQF5nt8aTFdz2dsvLCTjFi1B7_lTUoePP756-cRgK0cB6M8I5ZWc-ban5ZZgyz906ZWUq1QWY749n-4YjphgXbHjsyqIWP4Hj48ej9Z7ebxeBmIsIgXIS8QGceGp6l2pc5foLQIo4CoT2NQU6aJ9LgJbw8lLzg3M_8iKeYrRShiVMdPIbV2XxmNoEFBVVRMikwqReFF8Um0IQql8aYC0mTOfB6IROVdUDlNC9jqlqIZa6Ii8py0YEXPe1lC89xI9UrK9qeRFfn1NAmQ3Uy_qTC04M9z9uN1BcH2EL2Cs2Mzk70zMyvahUjNbUMSQeetDrRP4z7UYK7nnDgjRX9X15E7SK77erpvxBvwd22lE1dws9gtamuzHO4nX1ryroawC05iQew9uFweLw3sEbwB1jABzs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5IW7QvWm81XgcUQSFtMplkkkcRa7fuhqIrLb4Mk8lEotvdkk3VR3-Cv9Ff4jmTNEuhCCJ5mYeTkJzLnMucfAfgWRpFIrOh9jEWKnwRB5WvRVn6HH297Lx04YZNyDxPj4-zw743h_6F6fAhhoIbWYbbr8nAqSC9u0IN_XLS1DuojhnuwOsCIw2a3HA0yleYu5mbUYwRROSHaSAHdFK-u7r3gj9aJ9b-uCzYvBi7Ouezd-M_X3sLrvdRJ3vVqclNuGLnt-DqpD9Xvw3LEdV4DfotVEfm2jxp8V3PZqw-cYOMGHXIf2Ytyt7-_vmrpKkAHaIHI8hjVi8XbbM4rQ3DBL7XZ1ZQeZC55ng2eT9iumXRTsCmFhXxDnzcezN9ve_34xh8IxKMw0XMK_TnseWm0KEs8ROEFmkSCR1ojHOKMpMWLxGUseQV56EJE15gwlLFNi10dBfW5ou5vQcsqqiQYqTAvF5UQZLaSBOwXJFiOiSt8eDFuVCU6bHKaWTGTHUoy1wRF5XjogdPB9rTDqHjUqrnTrYDiW6-Uk-bjNVR_lbFnw7HQXCQqA8esHPhK7Q0Oj7Rc7s4W6oUqalrSHqw3SnF8DAeJhlufMKDl072f3kRdYDsdqv7_0L8BK7tTydjNR7l7x7AZlfZpqbhh7DWNmf2EWyYb229bB47G_gDSw8I0Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7IrhRfvF_idUARFNImk0kmeRTr6tbtstQWiy_DZDKR6HZ3yabqoz_B3-gv8ZxJmqVQBJG8zMNJSM5lzmVOvgPwLI0ikdlQ-xgL5b6Ig9LXoih8jr5etl46d8Mm5HSaHh9ns643h_6FafEh-oIbWYbbr8nA7aoodzaooV9O6mob1THDHXgoaIrMAIa7B6OjyQZ1N3NTijGGiPwwDWSPT8p3Nnef80hDYu6Pi8LN89Grcz-ja__54tfhahd3sletotyAS3ZxE7b2u5P1W7AeU5XXoOdChWSu0ZMW3_V8zqoTN8qIUY_8Z9ag9O3vn78KmgvQYnowAj1m1XrZ1MtVZRim8J1Gs5wKhMy1x7P9gzHTDYu2A3ZoURVvw9HozeHrd343kME3IsFIXMS8RI8eW25yHcoCP0FokSaR0IHGSCcvMmnxEkERS15yHpow4TmmLGVs01xHd2CwWC7sPWBRSaUUIwVm9qIMktRGmqDl8hQTImmNBy_OhKJMh1ZOQzPmqsVZ5oq4qBwXPXja065ajI4LqZ472fYkuv5KXW0yVh-nb1X8aTYJgr1EffCAnQlfoa3RAYpe2OXpWqVITX1D0oO7rVL0D-NhkuHWJzx46WT_lxdRe8hut7r_L8RPYGu2O1KT8fT9A7jSlrapa_ghDJr61D6Cy-ZbU63rx50R_AH7ywl6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracranial+arterial+wall+imaging+using+three-dimensional+high+isotropic+resolution+black+blood+MRI+at+3.0+Tesla&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Qiao%2C+Ye&rft.au=Steinman%2C+David+A&rft.au=Qin%2C+Qin&rft.au=Etesami%2C+Maryam&rft.date=2011-07-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=34&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1002%2Fjmri.22592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon