Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla
Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic T...
Uložené v:
| Vydané v: | Journal of magnetic resonance imaging Ročník 34; číslo 1; s. 22 - 30 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
|
| Predmet: | |
| ISSN: | 1053-1807, 1522-2586, 1522-2586 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose:
To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).
Materials and Methods:
Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D‐TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4‐mm isotropic‐resolution to explore the trade‐off between SNR and voxel volume. Wall signal‐to‐noise‐ratio (SNRwall), wall‐lumen contrast‐to‐noise‐ratio (CNRwall‐lumen), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D‐VISTA and 2D‐TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC).
Results:
Compared with 2D‐TSE measurements, 3D‐VISTA provided 58% and 74% improvement in SNRwall and CNRwall‐lumen, respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNRwall‐lumen using 0.4‐mm resolution VISTA decreased by 27%, compared with 0.5‐mm VISTA but with reduced partial‐volume‐based overestimation of wall thickness. Reliability for 3D measurements was good to excellent.
Conclusion:
The 3D‐VISTA provides SNR‐efficient, highly reliable measurements of intracranial vessels at high isotropic‐resolution, enabling broad coverage in a clinically acceptable time. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).PURPOSETo develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC).MATERIALS AND METHODSThirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC).Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent.RESULTSCompared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent.The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time.CONCLUSIONThe 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Purpose: To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Materials and Methods: Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5‐mm isotropic‐resolution three‐dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D‐TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4‐mm isotropic‐resolution to explore the trade‐off between SNR and voxel volume. Wall signal‐to‐noise‐ratio (SNRwall), wall‐lumen contrast‐to‐noise‐ratio (CNRwall‐lumen), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D‐VISTA and 2D‐TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Results: Compared with 2D‐TSE measurements, 3D‐VISTA provided 58% and 74% improvement in SNRwall and CNRwall‐lumen, respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNRwall‐lumen using 0.4‐mm resolution VISTA decreased by 27%, compared with 0.5‐mm VISTA but with reduced partial‐volume‐based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. Conclusion: The 3D‐VISTA provides SNR‐efficient, highly reliable measurements of intracranial vessels at high isotropic‐resolution, enabling broad coverage in a clinically acceptable time. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc. To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. |
| Author | Qiao, Ye Qin, Qin Astor, Brad C. Etesami, Maryam Schär, Michael Steinman, David A. Wasserman, Bruce A. |
| Author_xml | – sequence: 1 givenname: Ye surname: Qiao fullname: Qiao, Ye organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 2 givenname: David A. surname: Steinman fullname: Steinman, David A. organization: Biomedical Simulation Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada – sequence: 3 givenname: Qin surname: Qin fullname: Qin, Qin organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 4 givenname: Maryam surname: Etesami fullname: Etesami, Maryam organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 5 givenname: Michael surname: Schär fullname: Schär, Michael organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 6 givenname: Brad C. surname: Astor fullname: Astor, Brad C. organization: Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA – sequence: 7 givenname: Bruce A. surname: Wasserman fullname: Wasserman, Bruce A. email: bwasser@jhmi.edu organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21698704$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVtr3DAQhUVJaa4v_QFFb4WCt5IsWfZjCW26YXshTQn0RcjyeFeJbG0kmTT_vnI324dSimA0MN8ZOGeO0cHoR0DoJSULSgh7ezsEu2BMNOwZOqKCsYKJujrIPRFlQWsiD9FxjLeEkKbh4gU6ZLRqakn4EbpfjiloE_RotcM6JAhz86Cdw3bQazuu8RTnmjYBoOjsAGO0fszQxq432Eafgt9agwNE76aUZ7h12tzl6n2HP10tsU64XBB8DdHpU_S81y7C2dN_gr5_eH99_rFYfblYnr9bFYZXNSu4YD1nlQBmWk1ll-1xzeuq5JrosmnarpGQHyedkKxnjBpasbaRvBdQt7o8Qa93e7fB308QkxpsNOCcHsFPUdWylEQwIjP56omc2gE6tQ3ZeXhU-5QyQHaACT7GAL0yNunZac7OOkWJmg-h5kOo34fIkjd_SfZb_wnTHfxgHTz-h1SXOc29pthpbEzw849GhztVZWdC3Xy-UOLH1xUhl5X6Vv4CdNOn9Q |
| CitedBy_id | crossref_primary_10_1007_s10072_015_2404_x crossref_primary_10_1007_s10334_018_0730_8 crossref_primary_10_1111_jon_12315 crossref_primary_10_1002_brb3_103 crossref_primary_10_1002_brb3_1154 crossref_primary_10_1148_radiol_2021204096 crossref_primary_10_1002_jmri_25211 crossref_primary_10_1002_mp_15860 crossref_primary_10_1007_s00330_022_09207_2 crossref_primary_10_1097_RMR_0000000000000083 crossref_primary_10_1097_RMR_0000000000000080 crossref_primary_10_1038_s41598_022_10951_0 crossref_primary_10_4103_0366_6999_182826 crossref_primary_10_1002_mrm_26201 crossref_primary_10_1227_NEU_0b013e31827d1012 crossref_primary_10_1016_j_mric_2023_04_006 crossref_primary_10_1016_j_crad_2022_08_132 crossref_primary_10_1053_j_sult_2021_07_004 crossref_primary_10_1002_nbm_4567 crossref_primary_10_1007_s00330_015_3975_x crossref_primary_10_3389_fnins_2022_888814 crossref_primary_10_1007_s00330_023_10539_w crossref_primary_10_1161_STROKEAHA_114_007404 crossref_primary_10_1186_s40809_016_0021_6 crossref_primary_10_1016_j_jocmr_2024_101112 crossref_primary_10_1007_s00234_021_02891_9 crossref_primary_10_1007_s10439_013_0800_z crossref_primary_10_1161_JAHA_118_009705 crossref_primary_10_1259_bjr_20180950 crossref_primary_10_1136_jnnp_2015_312020 crossref_primary_10_1016_j_atherosclerosis_2014_10_007 crossref_primary_10_1109_TBME_2019_2959030 crossref_primary_10_1148_radiol_11111261 crossref_primary_10_1002_jmri_23856 crossref_primary_10_1007_s00701_015_2526_1 crossref_primary_10_1212_WNL_0000000000003837 crossref_primary_10_1148_radiol_2017162096 crossref_primary_10_3389_fnins_2021_620172 crossref_primary_10_1007_s00415_022_11315_4 crossref_primary_10_1109_TBME_2019_2896972 crossref_primary_10_1016_j_mric_2020_09_003 crossref_primary_10_1007_s00330_022_09218_z crossref_primary_10_1371_journal_pone_0220603 crossref_primary_10_1002_jmri_26553 crossref_primary_10_3171_2016_12_JNS162262 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107293 crossref_primary_10_1136_neurintsurg_2015_012127 crossref_primary_10_1007_s00330_017_4860_6 crossref_primary_10_3389_fneur_2023_1165453 crossref_primary_10_1016_j_mri_2023_07_008 crossref_primary_10_1016_j_jocn_2023_10_008 crossref_primary_10_1016_j_mri_2015_10_002 crossref_primary_10_3389_fneur_2021_693397 crossref_primary_10_1016_j_ejrad_2019_07_032 crossref_primary_10_1111_ene_16422 crossref_primary_10_1016_j_nic_2024_01_003 crossref_primary_10_1002_jmri_28087 crossref_primary_10_1148_radiol_13112310 crossref_primary_10_1007_s00330_016_4525_x crossref_primary_10_1002_jmri_27550 crossref_primary_10_1016_j_nic_2021_01_005 crossref_primary_10_1007_s00330_021_08331_9 crossref_primary_10_1016_j_ejrad_2016_01_014 crossref_primary_10_1016_j_ejrad_2023_111045 crossref_primary_10_3389_fneur_2025_1583857 crossref_primary_10_1002_mrm_28777 crossref_primary_10_3389_fnins_2021_665076 crossref_primary_10_1007_s00330_013_2905_z crossref_primary_10_1007_s00330_019_06366_7 crossref_primary_10_1016_j_mri_2021_10_026 crossref_primary_10_1097_RLI_0000000000000142 crossref_primary_10_1186_s12968_016_0237_2 crossref_primary_10_1371_journal_pone_0160781 crossref_primary_10_1016_j_braindev_2022_01_003 crossref_primary_10_1148_radiol_2020190643 crossref_primary_10_3389_fneur_2023_1264791 crossref_primary_10_1177_1747493019840942 crossref_primary_10_1016_j_acra_2024_03_041 crossref_primary_10_1177_1756286419833295 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107477 crossref_primary_10_1186_s12968_016_0309_3 crossref_primary_10_1161_CIRCULATIONAHA_113_006919 crossref_primary_10_1016_j_ejrad_2016_09_006 crossref_primary_10_1161_STROKEAHA_117_017922 crossref_primary_10_1016_j_crad_2017_11_017 crossref_primary_10_1002_mrm_29647 crossref_primary_10_3389_fnagi_2021_706544 crossref_primary_10_23736_S1824_4785_18_03036_4 crossref_primary_10_1177_19714009211026920 crossref_primary_10_3389_fimmu_2021_692222 crossref_primary_10_1017_cjn_2020_177 crossref_primary_10_1136_practneurol_2020_002806 crossref_primary_10_1002_jmri_25611 crossref_primary_10_1002_jmri_26028 crossref_primary_10_1007_s00062_019_00867_0 crossref_primary_10_3171_2017_1_FOCUS16492 crossref_primary_10_3348_kjr_2017_18_2_383 crossref_primary_10_1016_j_cmpb_2025_108881 crossref_primary_10_4103_0366_6999_158314 crossref_primary_10_1007_s00234_019_02190_4 crossref_primary_10_1016_j_mri_2021_08_004 crossref_primary_10_1212_WNL_0000000000000868 crossref_primary_10_1186_s40809_016_0014_5 crossref_primary_10_1016_j_yacr_2019_05_005 crossref_primary_10_1002_jmri_25296 crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_08_013 crossref_primary_10_1161_STROKEAHA_115_009955 crossref_primary_10_3171_2019_9_FOCUS19489 crossref_primary_10_1016_j_neuroimage_2023_120504 crossref_primary_10_1016_j_neuroimage_2019_05_065 crossref_primary_10_1002_jmri_27587 crossref_primary_10_1002_mrm_26152 crossref_primary_10_1007_s00234_017_1925_9 crossref_primary_10_1161_STROKEAHA_115_011369 crossref_primary_10_1002_rcs_1487 crossref_primary_10_1161_STROKEAHA_116_013007 crossref_primary_10_1177_0961203315588577 crossref_primary_10_1016_j_jocn_2018_10_145 crossref_primary_10_1016_j_atherosclerosis_2018_04_023 crossref_primary_10_1016_j_mri_2021_01_004 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108015 crossref_primary_10_1007_s00234_025_03642_w crossref_primary_10_1007_s00062_015_0484_x crossref_primary_10_1111_jon_12719 crossref_primary_10_1259_bjr_20210031 crossref_primary_10_1016_j_wneu_2019_02_250 crossref_primary_10_1002_jmri_24542 crossref_primary_10_1177_0284185119826538 crossref_primary_10_1007_s00330_018_5395_1 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106026 crossref_primary_10_3390_jcdd11080249 crossref_primary_10_1007_s10334_017_0644_x crossref_primary_10_1002_mrm_29217 crossref_primary_10_1177_15910199221133170 crossref_primary_10_3390_jcm10091850 crossref_primary_10_1016_j_ejrad_2020_108921 crossref_primary_10_1007_s10334_016_0531_x crossref_primary_10_1542_peds_2015_2143 crossref_primary_10_1007_s00330_018_5323_4 crossref_primary_10_1161_STROKEAHA_116_014795 crossref_primary_10_1097_RLI_0000000000000595 crossref_primary_10_1002_nbm_4820 crossref_primary_10_1007_s00330_016_4483_3 crossref_primary_10_1016_j_jocmr_2025_101918 crossref_primary_10_1016_j_wneu_2019_06_084 crossref_primary_10_1016_j_media_2020_101818 crossref_primary_10_1007_s00062_021_01018_0 crossref_primary_10_1007_s00330_022_09010_z crossref_primary_10_1148_radiol_2016151124 crossref_primary_10_1161_STROKEAHA_117_020046 crossref_primary_10_1186_s12968_015_0143_z crossref_primary_10_1016_j_crad_2015_11_012 crossref_primary_10_1007_s10072_020_04562_8 crossref_primary_10_1002_mp_16074 crossref_primary_10_1186_s12883_018_1214_1 crossref_primary_10_1016_j_jneuroim_2023_578032 crossref_primary_10_1016_j_clineuro_2014_08_010 crossref_primary_10_1161_STROKEAHA_119_026497 crossref_primary_10_1002_jmri_27399 crossref_primary_10_1002_nbm_3322 crossref_primary_10_1016_j_neurad_2017_11_006 crossref_primary_10_1002_jmri_28923 crossref_primary_10_1016_j_ejrad_2019_108644 crossref_primary_10_1177_0300060520977388 crossref_primary_10_3390_brainsci13020217 crossref_primary_10_3389_fnagi_2022_785661 crossref_primary_10_3348_kjr_2018_0424 crossref_primary_10_1088_2057_1976_aa9a09 crossref_primary_10_1177_1591019916653252 crossref_primary_10_1259_bjr_20220686 crossref_primary_10_1002_jmri_24430 crossref_primary_10_3171_2019_4_FOCUS19235 crossref_primary_10_1371_journal_pone_0213514 crossref_primary_10_3389_fneur_2021_637556 crossref_primary_10_1136_neurintsurg_2022_018912 crossref_primary_10_1016_j_mri_2019_07_001 crossref_primary_10_1002_mrm_25667 crossref_primary_10_1212_WNL_0000000000209250 crossref_primary_10_1016_j_neurad_2020_01_085 crossref_primary_10_1002_jmri_28234 crossref_primary_10_1002_mrm_25785 crossref_primary_10_1016_j_mri_2015_06_006 crossref_primary_10_1016_j_mri_2019_04_016 crossref_primary_10_1186_s12968_018_0453_z crossref_primary_10_1016_j_atherosclerosis_2016_03_033 crossref_primary_10_1148_radiol_13122812 crossref_primary_10_1038_s41598_020_69932_w crossref_primary_10_1002_jmri_24222 crossref_primary_10_1186_s12968_020_0604_x crossref_primary_10_1371_journal_pone_0166929 crossref_primary_10_1109_TMI_2012_2216542 crossref_primary_10_1007_s00062_019_00819_8 crossref_primary_10_1016_j_nic_2012_02_006 crossref_primary_10_3348_kjr_2020_0128 crossref_primary_10_1161_SVIN_122_000757 crossref_primary_10_1007_s00062_017_0637_1 crossref_primary_10_1007_s12028_018_0534_8 crossref_primary_10_1002_jmri_26750 crossref_primary_10_1007_s10072_025_08366_6 crossref_primary_10_4103_0366_6999_157633 crossref_primary_10_1177_02841851231205487 crossref_primary_10_1007_s10334_017_0667_3 crossref_primary_10_1155_2015_540217 crossref_primary_10_1002_mrm_27747 crossref_primary_10_1016_j_mri_2024_02_001 crossref_primary_10_1007_s00701_013_1919_2 |
| Cites_doi | 10.1097/RLI.0b013e3181b4c218 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W 10.1161/STROKEAHA.107.496513 10.1016/j.atherosclerosis.2010.06.035 10.1002/jmri.22058 10.1111/j.1552-6569.2008.00272.x 10.1002/mrm.1910400216 10.1002/jmri.20356 10.1016/j.mri.2007.06.004 10.1007/s11910-008-0028-8 10.1148/radiol.2431060310 10.1111/j.1552-6569.2009.00414.x 10.1002/mrm.21680 10.1002/mrm.20863 10.1259/bjr/74101656 10.1148/radiol.2281020484 10.1016/j.atherosclerosis.2008.10.019 10.1002/jmri.10294 10.1002/mrm.21758 10.1161/01.STR.27.11.1974 10.1007/s10072-007-0748-6 10.1161/hc0202.102121 10.1148/radiol.2232010659 10.1002/jmri.22043 10.1161/01.STR.0000185726.83152.00 10.1148/radiology.181.3.1947077 10.1002/sim.1253 10.1161/01.STR.26.1.14 10.1016/0003-4975(94)01037-D 10.1212/01.wnl.0000342470.69739.b3 10.1161/ATVB.15v10.1533 10.1002/mrm.10391 10.1016/S0140-6736(86)90837-8 10.1212/01.WNL.0000150543.61244.06 10.1159/000209238 10.1002/mrm.22510 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/jmri.22592 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-2586 |
| EndPage | 30 |
| ExternalDocumentID | 21698704 10_1002_jmri_22592 JMRI22592 ark_67375_WNG_5ZPL00J6_S |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Yousem Family Research Fund – fundername: NHLBI NIH HHS grantid: K99 HL106232 |
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c4682-452f4265e2cba17d2594a48634a0a399bd97e7e740d572f221c162b974f5e8ba3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 228 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292421800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-1807 1522-2586 |
| IngestDate | Thu Oct 02 12:00:35 EDT 2025 Mon Jul 21 05:59:29 EDT 2025 Sat Nov 29 02:57:31 EST 2025 Tue Nov 18 21:39:01 EST 2025 Wed Jan 22 16:28:17 EST 2025 Sun Sep 21 06:15:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4682-452f4265e2cba17d2594a48634a0a399bd97e7e740d572f221c162b974f5e8ba3 |
| Notes | ArticleID:JMRI22592 istex:AFDBBB0D2D5F8A9970D6A17B5DF63F539AF7B225 Yousem Family Research Fund ark:/67375/WNG-5ZPL00J6-S ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22592 |
| PMID | 21698704 |
| PQID | 873705207 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_873705207 pubmed_primary_21698704 crossref_citationtrail_10_1002_jmri_22592 crossref_primary_10_1002_jmri_22592 wiley_primary_10_1002_jmri_22592_JMRI22592 istex_primary_ark_67375_WNG_5ZPL00J6_S |
| PublicationCentury | 2000 |
| PublicationDate | July 2011 |
| PublicationDateYYYYMMDD | 2011-07-01 |
| PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Journal of magnetic resonance imaging |
| PublicationTitleAlternate | J. Magn. Reson. Imaging |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Zhang Z, Fan Z, Carroll TJ, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009; 44: 619-626. Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181-185. Bernstein MA, King KE, Zhou XJ, Fong W. Handbook of MRI pulse sequences. (equation 32, 36). London: Academic Press; 2004. p 609. Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler thromb Vasc Biol 1995; 15: 1533-1542. Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55: 1030-1037. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310. Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York, NY: John Wiley and Sons; 218. Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 2010; 83: e182-e184. Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009; 72: 627-634. Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996; 27: 1974-1980. Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003; 49: 527-535. Klein IF, Lavallee PC, Schouman-Claeys E, Amarenco P. High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005; 64: 551-552. Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2010. Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60: 640-649. Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009; 19( Suppl 1): 1S-10S. Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999; 41: 575-590. Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998; 40: 298-310. Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010; 31: 645-654. Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med 2002; 21: 3431-3446. Zhang S, Cai J, Luo Y, et al. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology 2003; 228: 200-205. Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 2009; 204: 447-452. Sacco RL, Kargman DE, Gu Q, Zamanillo MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 1995; 26: 14-20. Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008; 39: 1142-1147. Storey P, Atanasova IP, Lim RP, et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med 2010; 64: 1098-1108. Antiga L, Wasserman BA, Steinman DA. On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med 2008; 60: 1020-1028. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181: 655-660. Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. J Magn Reson Imaging 2010; 31: 406-415. Cerrato P, Grasso M, Lentini A, et al. Atherosclerotic adult Moya-Moya disease in a patient with hyperhomocysteinaemia. Neurol Sci 2007; 28: 45-47. Ryu CW, Jahng GH, Kim EJ, Choi WS, Yang DM. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis 2009; 27: 433-442. Caplan LR. Intracranial large artery occlusive disease. Curr Neurol Neurosci Rep 2008; 8: 177-181. Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003; 17: 572-580. Wasserman BA, Smith WI, Trout HH III, Cannon RO III, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002; 223: 566-573. Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22. Greenman RL, Wang X, Ngo L, Marquis RP, Farrar N. An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength. Magn Reson Imaging 2008; 26: 246-253. Ashley WW Jr, Zipfel GJ, Moran CJ, Zheng J, Derdeyn CP. Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging. J Neuroimaging 2009; 19: 381-384. McRobbie RW, Moore EA, Graves MJ. MRI from picture to proton. New York: Cambridge; 2003. Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology 2007; 243: 220-228. Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 2010; 212: 507-511. Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995; 59: 1594-1603. Wasserman BA, Wityk RJ, Trout HH III, Virmani R. Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 2005; 36: 2504-2513. 2009; 44 2010; 31 1995; 15 2010 1995; 59 2006; 55 2007; 243 2008; 39 2005; 64 2008; 8 2003; 17 1999; 41 2004 2003 1998; 40 2009; 27 2005; 22 2010; 83 2007; 28 1986; 1 2010; 64 2003; 228 1995; 26 2009; 72 2002; 223 1991; 181 2002; 21 2010; 212 2008; 26 2002; 105 2003; 49 2009; 19 1996; 27 2008; 60 2009; 204 2005; 36 e_1_2_6_31_2 Fleiss J (e_1_2_6_29_2) e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 McRobbie RW (e_1_2_6_33_2) 2003 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Bernstein MA (e_1_2_6_30_2) 2004 e_1_2_6_41_2 e_1_2_6_40_2 Balu N (e_1_2_6_39_2) 2010 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – reference: Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181: 655-660. – reference: Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995; 59: 1594-1603. – reference: Greenman RL, Wang X, Ngo L, Marquis RP, Farrar N. An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength. Magn Reson Imaging 2008; 26: 246-253. – reference: Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009; 72: 627-634. – reference: Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 2010; 83: e182-e184. – reference: Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60: 640-649. – reference: Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med 2002; 21: 3431-3446. – reference: Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med 2010. – reference: Antiga L, Wasserman BA, Steinman DA. On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med 2008; 60: 1020-1028. – reference: Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. J Magn Reson Imaging 2010; 31: 406-415. – reference: Klein IF, Lavallee PC, Schouman-Claeys E, Amarenco P. High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005; 64: 551-552. – reference: Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010; 31: 645-654. – reference: Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology 2007; 243: 220-228. – reference: Sacco RL, Kargman DE, Gu Q, Zamanillo MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 1995; 26: 14-20. – reference: Bernstein MA, King KE, Zhou XJ, Fong W. Handbook of MRI pulse sequences. (equation 32, 36). London: Academic Press; 2004. p 609. – reference: McRobbie RW, Moore EA, Graves MJ. MRI from picture to proton. New York: Cambridge; 2003. – reference: Wasserman BA, Wityk RJ, Trout HH III, Virmani R. Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 2005; 36: 2504-2513. – reference: Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 2010; 212: 507-511. – reference: Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003; 17: 572-580. – reference: Caplan LR. Intracranial large artery occlusive disease. Curr Neurol Neurosci Rep 2008; 8: 177-181. – reference: Ashley WW Jr, Zipfel GJ, Moran CJ, Zheng J, Derdeyn CP. Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging. J Neuroimaging 2009; 19: 381-384. – reference: Wasserman BA, Smith WI, Trout HH III, Cannon RO III, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002; 223: 566-573. – reference: Zhang Z, Fan Z, Carroll TJ, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009; 44: 619-626. – reference: Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003; 49: 527-535. – reference: Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler thromb Vasc Biol 1995; 15: 1533-1542. – reference: Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005; 22: 13-22. – reference: Storey P, Atanasova IP, Lim RP, et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med 2010; 64: 1098-1108. – reference: Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York, NY: John Wiley and Sons; 218. – reference: Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008; 39: 1142-1147. – reference: Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181-185. – reference: Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55: 1030-1037. – reference: Cerrato P, Grasso M, Lentini A, et al. Atherosclerotic adult Moya-Moya disease in a patient with hyperhomocysteinaemia. Neurol Sci 2007; 28: 45-47. – reference: Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310. – reference: Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996; 27: 1974-1980. – reference: Zhang S, Cai J, Luo Y, et al. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology 2003; 228: 200-205. – reference: Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis 2009; 204: 447-452. – reference: Ryu CW, Jahng GH, Kim EJ, Choi WS, Yang DM. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis 2009; 27: 433-442. – reference: Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999; 41: 575-590. – reference: Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009; 19( Suppl 1): 1S-10S. – reference: Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998; 40: 298-310. – volume: 72 start-page: 627 year: 2009 end-page: 634 article-title: Intracranial arterial wall imaging using high‐resolution 3‐tesla contrast‐enhanced MRI publication-title: Neurology – volume: 212 start-page: 507 year: 2010 end-page: 511 article-title: In vivo high‐resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis publication-title: Atherosclerosis – volume: 40 start-page: 298 year: 1998 end-page: 310 article-title: Intracranial black‐blood MR angiography with high‐resolution 3D fast spin echo publication-title: Magn Reson Med – volume: 36 start-page: 2504 year: 2005 end-page: 2513 article-title: Low‐grade carotid stenosis: looking beyond the lumen with MRI publication-title: Stroke – volume: 19 start-page: 1S issue: Suppl 1 year: 2009 end-page: 10S article-title: Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results publication-title: J Neuroimaging – volume: 60 start-page: 1020 year: 2008 end-page: 1028 article-title: On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging publication-title: Magn Reson Med – volume: 41 start-page: 575 year: 1999 end-page: 590 article-title: Voxel sensitivity function description of flow‐induced signal loss in MR imaging: implications for black‐blood MR angiography with turbo spin‐echo sequences publication-title: Magn Reson Med – volume: 22 start-page: 13 year: 2005 end-page: 22 article-title: Routine clinical brain MRI sequences for use at 3.0 Tesla publication-title: J Magn Reson Imaging – volume: 15 start-page: 1533 year: 1995 end-page: 1542 article-title: T2‐weighted contrast for NMR characterization of human atherosclerosis publication-title: Arterioscler thromb Vasc Biol – volume: 17 start-page: 572 year: 2003 end-page: 580 article-title: Volume‐selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement publication-title: J Magn Reson Imaging – year: 2010 article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI publication-title: Magn Reson Med – volume: 228 start-page: 200 year: 2003 end-page: 205 article-title: Measurement of carotid wall volume and maximum area with contrast‐enhanced 3D MR imaging: initial observations publication-title: Radiology – volume: 27 start-page: 1974 year: 1996 end-page: 1980 article-title: Race and sex differences in the distribution of cerebral atherosclerosis publication-title: Stroke – volume: 55 start-page: 1030 year: 2006 end-page: 1037 article-title: Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast publication-title: Magn Reson Med – year: 2003 – volume: 27 start-page: 433 year: 2009 end-page: 442 article-title: High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla publication-title: Cerebrovasc Dis – volume: 49 start-page: 527 year: 2003 end-page: 535 article-title: Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS) publication-title: Magn Reson Med – volume: 31 start-page: 645 year: 2010 end-page: 654 article-title: Carotid arterial wall MRI at 3T using 3D variable‐flip‐angle turbo spin‐echo (TSE) with flow‐sensitive dephasing (FSD) publication-title: J Magn Reson Imaging – start-page: 218 – volume: 1 start-page: 307 year: 1986 end-page: 310 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – volume: 204 start-page: 447 year: 2009 end-page: 452 article-title: Atherosclerosis of middle cerebral artery: evaluation with high‐resolution MR imaging at 3T publication-title: Atherosclerosis – volume: 59 start-page: 1594 year: 1995 end-page: 1603 article-title: Pressure‐induced arterial wall stress and atherosclerosis publication-title: Ann Thorac Surg – volume: 223 start-page: 566 year: 2002 end-page: 573 article-title: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium‐enhanced double‐oblique MR imaging initial results publication-title: Radiology – volume: 105 start-page: 181 year: 2002 end-page: 185 article-title: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke publication-title: Circulation – volume: 31 start-page: 406 year: 2010 end-page: 415 article-title: MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics publication-title: J Magn Reson Imaging – volume: 243 start-page: 220 year: 2007 end-page: 228 article-title: Three‐dimensional black‐blood MR imaging of carotid arteries with segmented steady‐state free precession: initial experience publication-title: Radiology – volume: 39 start-page: 1142 year: 2008 end-page: 1147 article-title: Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke publication-title: Stroke – volume: 19 start-page: 381 year: 2009 end-page: 384 article-title: Moyamoya phenomenon secondary to intracranial atherosclerotic disease: diagnosis by 3T magnetic resonance imaging publication-title: J Neuroimaging – volume: 26 start-page: 14 year: 1995 end-page: 20 article-title: Race‐ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study publication-title: Stroke – volume: 8 start-page: 177 year: 2008 end-page: 181 article-title: Intracranial large artery occlusive disease publication-title: Curr Neurol Neurosci Rep – volume: 64 start-page: 1098 year: 2010 end-page: 1108 article-title: Tailoring the flow sensitivity of fast spin‐echo sequences for noncontrast peripheral MR angiography publication-title: Magn Reson Med – volume: 60 start-page: 640 year: 2008 end-page: 649 article-title: Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo publication-title: Magn Reson Med – volume: 64 start-page: 551 year: 2005 end-page: 552 article-title: High‐resolution MRI identifies basilar artery plaques in paramedian pontine infarct publication-title: Neurology – volume: 83 start-page: e182 year: 2010 end-page: e184 article-title: High‐resolution black‐blood contrast‐enhanced T1 weighted images for the diagnosis and follow‐up of intracranial arteritis publication-title: Br J Radiol – volume: 44 start-page: 619 year: 2009 end-page: 626 article-title: Three‐dimensional T2‐weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla publication-title: Invest Radiol – volume: 26 start-page: 246 year: 2008 end-page: 253 article-title: An assessment of the sharpness of carotid artery tissue boundaries with acquisition voxel size and field strength publication-title: Magn Reson Imaging – volume: 181 start-page: 655 year: 1991 end-page: 660 article-title: Fast selective black blood MR imaging publication-title: Radiology – start-page: 609 year: 2004 – volume: 21 start-page: 3431 year: 2002 end-page: 3446 article-title: Assessing intrarater, interrater and test‐retest reliability of continuous measurements publication-title: Stat Med – volume: 28 start-page: 45 year: 2007 end-page: 47 article-title: Atherosclerotic adult Moya‐Moya disease in a patient with hyperhomocysteinaemia publication-title: Neurol Sci – ident: e_1_2_6_21_2 doi: 10.1097/RLI.0b013e3181b4c218 – ident: e_1_2_6_23_2 doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W – volume-title: MRI from picture to proton year: 2003 ident: e_1_2_6_33_2 – ident: e_1_2_6_3_2 doi: 10.1161/STROKEAHA.107.496513 – ident: e_1_2_6_7_2 doi: 10.1016/j.atherosclerosis.2010.06.035 – ident: e_1_2_6_20_2 doi: 10.1002/jmri.22058 – ident: e_1_2_6_36_2 doi: 10.1111/j.1552-6569.2008.00272.x – ident: e_1_2_6_17_2 doi: 10.1002/mrm.1910400216 – ident: e_1_2_6_31_2 doi: 10.1002/jmri.20356 – ident: e_1_2_6_25_2 doi: 10.1016/j.mri.2007.06.004 – ident: e_1_2_6_13_2 doi: 10.1007/s11910-008-0028-8 – ident: e_1_2_6_38_2 doi: 10.1148/radiol.2431060310 – ident: e_1_2_6_35_2 doi: 10.1111/j.1552-6569.2009.00414.x – ident: e_1_2_6_18_2 doi: 10.1002/mrm.21680 – ident: e_1_2_6_19_2 doi: 10.1002/mrm.20863 – ident: e_1_2_6_11_2 doi: 10.1259/bjr/74101656 – ident: e_1_2_6_40_2 doi: 10.1148/radiol.2281020484 – ident: e_1_2_6_10_2 doi: 10.1016/j.atherosclerosis.2008.10.019 – ident: e_1_2_6_14_2 doi: 10.1002/jmri.10294 – start-page: 609 volume-title: Handbook of MRI pulse sequences. (equation 32, 36) year: 2004 ident: e_1_2_6_30_2 – ident: e_1_2_6_12_2 doi: 10.1002/mrm.21758 – ident: e_1_2_6_34_2 doi: 10.1161/01.STR.27.11.1974 – ident: e_1_2_6_26_2 doi: 10.1007/s10072-007-0748-6 – ident: e_1_2_6_5_2 doi: 10.1161/hc0202.102121 – ident: e_1_2_6_16_2 doi: 10.1148/radiol.2232010659 – ident: e_1_2_6_6_2 doi: 10.1002/jmri.22043 – ident: e_1_2_6_4_2 doi: 10.1161/01.STR.0000185726.83152.00 – ident: e_1_2_6_15_2 doi: 10.1148/radiology.181.3.1947077 – ident: e_1_2_6_28_2 doi: 10.1002/sim.1253 – ident: e_1_2_6_2_2 doi: 10.1161/01.STR.26.1.14 – ident: e_1_2_6_41_2 doi: 10.1016/0003-4975(94)01037-D – ident: e_1_2_6_8_2 doi: 10.1212/01.wnl.0000342470.69739.b3 – ident: e_1_2_6_32_2 doi: 10.1161/ATVB.15v10.1533 – ident: e_1_2_6_22_2 doi: 10.1002/mrm.10391 – start-page: 218 volume-title: Statistical methods for rates and proportions ident: e_1_2_6_29_2 – ident: e_1_2_6_27_2 doi: 10.1016/S0140-6736(86)90837-8 – ident: e_1_2_6_37_2 doi: 10.1212/01.WNL.0000150543.61244.06 – ident: e_1_2_6_9_2 doi: 10.1159/000209238 – ident: e_1_2_6_24_2 doi: 10.1002/mrm.22510 – year: 2010 ident: e_1_2_6_39_2 article-title: Carotid plaque assessment using fast 3D isotropic resolution black‐blood MRI publication-title: Magn Reson Med |
| SSID | ssj0009945 |
| Score | 2.4791505 |
| Snippet | Purpose:
To develop a high isotropic‐resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).
Materials and Methods:
Thirteen healthy volunteers... To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial... To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T).PURPOSETo develop a high isotropic-resolution sequence to... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Adult Aged Aged, 80 and over Arteries - pathology Brain - pathology Cerebrospinal Fluid Female Fourier Analysis Humans Imaging, Three-Dimensional intracranial isotropic Magnetic Resonance Imaging - methods Male Middle Aged MRI plaque Reproducibility of Results Stroke - pathology vessel wall |
| Title | Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla |
| URI | https://api.istex.fr/ark:/67375/WNG-5ZPL00J6-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22592 https://www.ncbi.nlm.nih.gov/pubmed/21698704 https://www.proquest.com/docview/873705207 |
| Volume | 34 |
| WOSCitedRecordID | wos000292421800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2586 dateEnd: 20201207 omitProxy: false ssIdentifier: ssj0009945 issn: 1053-1807 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 issn: 1053-1807 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qK-JL63dj9VhQBIW0yWaTTcAXUU-vtEepLT36smySjaS93pUkVR_9E_wb_Uuc2eRyFIogkpd9mIRkPnY-dvIbgJdxEIjE-NrFWCh1RegVrhZ57nL09bL10qkdNiHH43gySQ5W4O3iX5gWH6IvuJFl2P2aDFyn9c4SNPTsoiq3URsT2oB94dP4gpPReIm4m9gJxRg_BK4fe7LHJuU7y1uveaM1YuyPm0LN65GrdT3Djf976Xuw3oWc7F2rI_dhxcwewJ397lD9IdQjKvBm6LRQF5nt8aTFdz2dsvLCTjFi1B7_lTUoePP756-cRgK0cB6M8I5ZWc-ban5ZZgyz906ZWUq1QWY749n-4YjphgXbHjsyqIWP4Hj48ej9Z7ebxeBmIsIgXIS8QGceGp6l2pc5foLQIo4CoT2NQU6aJ9LgJbw8lLzg3M_8iKeYrRShiVMdPIbV2XxmNoEFBVVRMikwqReFF8Um0IQql8aYC0mTOfB6IROVdUDlNC9jqlqIZa6Ii8py0YEXPe1lC89xI9UrK9qeRFfn1NAmQ3Uy_qTC04M9z9uN1BcH2EL2Cs2Mzk70zMyvahUjNbUMSQeetDrRP4z7UYK7nnDgjRX9X15E7SK77erpvxBvwd22lE1dws9gtamuzHO4nX1ryroawC05iQew9uFweLw3sEbwB1jABzs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5IW7QvWm81XgcUQSFtMplkkkcRa7fuhqIrLb4Mk8lEotvdkk3VR3-Cv9Ff4jmTNEuhCCJ5mYeTkJzLnMucfAfgWRpFIrOh9jEWKnwRB5WvRVn6HH297Lx04YZNyDxPj4-zw743h_6F6fAhhoIbWYbbr8nAqSC9u0IN_XLS1DuojhnuwOsCIw2a3HA0yleYu5mbUYwRROSHaSAHdFK-u7r3gj9aJ9b-uCzYvBi7Ouezd-M_X3sLrvdRJ3vVqclNuGLnt-DqpD9Xvw3LEdV4DfotVEfm2jxp8V3PZqw-cYOMGHXIf2Ytyt7-_vmrpKkAHaIHI8hjVi8XbbM4rQ3DBL7XZ1ZQeZC55ng2eT9iumXRTsCmFhXxDnzcezN9ve_34xh8IxKMw0XMK_TnseWm0KEs8ROEFmkSCR1ojHOKMpMWLxGUseQV56EJE15gwlLFNi10dBfW5ou5vQcsqqiQYqTAvF5UQZLaSBOwXJFiOiSt8eDFuVCU6bHKaWTGTHUoy1wRF5XjogdPB9rTDqHjUqrnTrYDiW6-Uk-bjNVR_lbFnw7HQXCQqA8esHPhK7Q0Oj7Rc7s4W6oUqalrSHqw3SnF8DAeJhlufMKDl072f3kRdYDsdqv7_0L8BK7tTydjNR7l7x7AZlfZpqbhh7DWNmf2EWyYb229bB47G_gDSw8I0Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7IrhRfvF_idUARFNImk0kmeRTr6tbtstQWiy_DZDKR6HZ3yabqoz_B3-gv8ZxJmqVQBJG8zMNJSM5lzmVOvgPwLI0ikdlQ-xgL5b6Ig9LXoih8jr5etl46d8Mm5HSaHh9ns643h_6FafEh-oIbWYbbr8nA7aoodzaooV9O6mob1THDHXgoaIrMAIa7B6OjyQZ1N3NTijGGiPwwDWSPT8p3Nnef80hDYu6Pi8LN89Grcz-ja__54tfhahd3sletotyAS3ZxE7b2u5P1W7AeU5XXoOdChWSu0ZMW3_V8zqoTN8qIUY_8Z9ag9O3vn78KmgvQYnowAj1m1XrZ1MtVZRim8J1Gs5wKhMy1x7P9gzHTDYu2A3ZoURVvw9HozeHrd343kME3IsFIXMS8RI8eW25yHcoCP0FokSaR0IHGSCcvMmnxEkERS15yHpow4TmmLGVs01xHd2CwWC7sPWBRSaUUIwVm9qIMktRGmqDl8hQTImmNBy_OhKJMh1ZOQzPmqsVZ5oq4qBwXPXja065ajI4LqZ472fYkuv5KXW0yVh-nb1X8aTYJgr1EffCAnQlfoa3RAYpe2OXpWqVITX1D0oO7rVL0D-NhkuHWJzx46WT_lxdRe8hut7r_L8RPYGu2O1KT8fT9A7jSlrapa_ghDJr61D6Cy-ZbU63rx50R_AH7ywl6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracranial+arterial+wall+imaging+using+three-dimensional+high+isotropic+resolution+black+blood+MRI+at+3.0+Tesla&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Qiao%2C+Ye&rft.au=Steinman%2C+David+A&rft.au=Qin%2C+Qin&rft.au=Etesami%2C+Maryam&rft.date=2011-07-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=34&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1002%2Fjmri.22592&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |