A linear programming approach to inverse planning in Gamma Knife radiosurgery
Purpose Leksell Gamma Knife® is a stereotactic radiosurgery system that allows fine‐grained control of the delivered dose distribution. We describe a new inverse planning approach that both resolves shortcomings of earlier approaches and unlocks new capabilities. Methods We fix the isocenter positio...
Gespeichert in:
| Veröffentlicht in: | Medical physics (Lancaster) Jg. 46; H. 4; S. 1533 - 1544 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
John Wiley and Sons Inc
01.04.2019
|
| Schlagworte: | |
| ISSN: | 0094-2405, 2473-4209, 2473-4209 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Purpose
Leksell Gamma Knife® is a stereotactic radiosurgery system that allows fine‐grained control of the delivered dose distribution. We describe a new inverse planning approach that both resolves shortcomings of earlier approaches and unlocks new capabilities.
Methods
We fix the isocenter positions and perform sector‐duration optimization using linear programming, and study the effect of beam‐on time penalization on the trade‐off between beam‐on time and plan quality. We also describe two techniques that reduce the problem size and thus further reduce the solution time: dualization and representative subsampling.
Results
The beam‐on time penalization reduces the beam‐on time by a factor 2–3 compared with the naïve alternative. Dualization and representative subsampling each leads to optimization time‐savings by a factor 5–20. Overall, we find in a comparison with 75 clinical plans that we can always find plans with similar coverage and better selectivity and beam‐on time. In 44 of these, we can even find a plan that also has better gradient index. On a standard GammaPlan workstation, the optimization times ranged from 2.3 to 26 s with a median time of 5.7 s.
Conclusion
We present a combination of techniques that enables sector‐duration optimization in a clinically feasible time frame. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0094-2405 2473-4209 2473-4209 |
| DOI: | 10.1002/mp.13440 |