On the relation between graph distance and Euclidean distance in random geometric graphs

Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The problem of finding upper bounds on d G (u, v) conditional on d E (u, v) that hold asymptotically almost surely has received quite a bit of attent...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability Vol. 48; no. 3; pp. 848 - 864
Main Authors: Díaz, J., Mitsche, D., Perarnau, G., Pérez-Giménez, X.
Format: Journal Article Publication
Language:English
Published: Cambridge, UK Cambridge University Press 01.09.2016
Applied Probability Trust
Subjects:
ISSN:0001-8678, 1475-6064
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The problem of finding upper bounds on d G (u, v) conditional on d E (u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d E (u, v) conditional on d E (u, v).
AbstractList Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The problem of finding upper bounds on d G (u, v) conditional on d E (u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=[...]([radical]logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d E (u, v) conditional on d E (u, v).
Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v) their Euclidean distance and by dE(u, v) their graph distance. The problem of finding upper bounds on dG(u, v) conditional on dE(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=¿(vlogn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on dE(u, v) conditional on dE(u, v). Peer Reviewed
Given any two vertices u , v of a random geometric graph G( n , r ), denote by d E ( u , v ) their Euclidean distance and by d E ( u , v ) their graph distance. The problem of finding upper bounds on d G ( u , v ) conditional on d E ( u , v ) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r =ω(√log n ) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d E ( u , v ) conditional on d E ( u , v ).
Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The problem of finding upper bounds on d G (u, v) conditional on d E (u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d E (u, v) conditional on d E (u, v).
Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v) their Euclidean distance and by dE(u, v) their graph distance. The problem of finding upper bounds on dG(u, v) conditional on dE(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of ... (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on dE(u, v) conditional on dE(u, v). (ProQuest: ... denotes formulae/symbols omitted.)
Given any two vertices u, v of a random geometric graph G(n, r), denote by d_E(u, v) their Euclidean distance and by d_G(u, v) their graph distance. The problem of finding upper bounds on d_G(u, v) conditional on d_E(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper, we improve the known upper bounds for values of r = \omega\sqrt(log n)) (i.e. for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d_G(u, v) conditional on d_E(u, v).
Given any two vertices u, υ of a random geometric graph g(n, r), denote by dE(u, υ) their Euclidean distance and by dG(u, υ) their graph distance. The problem of finding upper bounds on dG(u, υ) conditional on dE(u, υ) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of $r = \omega \left( {\sqrt {\log n} } \right)$ (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on dG(u, υ) conditional on dE(u, υ).
Author Perarnau, G.
Mitsche, D.
Díaz, J.
Pérez-Giménez, X.
Author_xml – sequence: 1
  givenname: J.
  surname: Díaz
  fullname: Díaz, J.
  email: diaz@lsi.upc.edu
  organization: Universitat Politècnica de Catalunya and BGSMath
– sequence: 2
  givenname: D.
  surname: Mitsche
  fullname: Mitsche, D.
  email: dmitsche@unice.fr
  organization: Université Nice Sophia Antipolis
– sequence: 3
  givenname: G.
  surname: Perarnau
  fullname: Perarnau, G.
  email: guillem.perarnau@ma4.upc.edu
  organization: Universitat Politècnica de Catalunya
– sequence: 4
  givenname: X.
  surname: Pérez-Giménez
  fullname: Pérez-Giménez, X.
  email: xperez@uwaterloo.ca
  organization: University of Waterloo
BackLink https://inria.hal.science/hal-01291932$$DView record in HAL
BookMark eNptkctr3DAQxkVJoZu0p54Lhl5agrejhy35GELaFBZyaaE3Icuzu1psaSvJKf3va8d5lJCDEDPz-z7mcUpOfPBIyHsKawpUfjHHuGZA6zWnr8iKClmVNdTihKwAgJaqluoNOU3pMIVcKliRXze-yHssIvYmu-CLFvMfRF_sojnui86lbLzFwviuuBpt7zo0_intfBGnUhiKHYYBc3R2Uaa35PXW9Anf3f9n5OfXqx-X1-Xm5tv3y4tNaUUtc2m3rDMVq8E2AiS2Au22UW0tOBjVqMbw1lZAUVFo20oCY0zUXJmmM6pFKfgZ-bz47k2vj9ENJv7VwTh9fbHRcw4oa2jD2S2dWLqwNo1WR7QYrcl39GMwPwaSaQ6qUrPm06I5xvB7xJT14JLFvjcew5g0VaJSvGF8buXjM_QQxuin6SdHCkqqRvzfRAwpRdxq6_Ld7nM0rtcU9HxLPd1yltWaz5rzZ5qHSV-mPyz0IeUQH1EhGlUJqKZ6ee9mhja6bodPjb7k9w_Hw7il
CitedBy_id crossref_primary_10_1016_j_ejc_2022_103616
crossref_primary_10_1016_j_amc_2018_09_038
crossref_primary_10_1109_TPDS_2019_2933839
crossref_primary_10_1109_TWC_2018_2808290
crossref_primary_10_1016_j_ejc_2023_103842
crossref_primary_10_1007_s00373_017_1768_5
crossref_primary_10_1002_aaai_12210
crossref_primary_10_1038_s41598_020_67421_8
crossref_primary_10_1103_PhysRevResearch_3_013211
crossref_primary_10_1007_s00454_023_00507_y
crossref_primary_10_1109_TGRS_2025_3552629
crossref_primary_10_1002_rsa_20922
crossref_primary_10_1177_0278364918802957
crossref_primary_10_1214_24_AAP2052
Cites_doi 10.1017/CBO9781139004114.009
10.1007/s00453-006-0172-y
10.1137/0109045
10.1093/acprof:oso/9780198506263.001.0001
10.1214/aoap/1034625335
10.1007/s00454-012-9482-9
10.1137/1.9781611973075.114
10.1007/978-3-642-25591-5_21
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright Copyright © Applied Probability Trust 2016
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © Applied Probability Trust 2016
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
XX2
1XC
VOOES
DOI 10.1017/apr.2016.31
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
Recercat
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef

Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate J. íaz et al.
Random geometric graphs
EISSN 1475-6064
EndPage 864
ExternalDocumentID oai:HAL:hal-01291932v1
oai_recercat_cat_2072_308581
10_1017_apr_2016_31
44985405
GroupedDBID -~X
09C
09E
0R~
23M
2AX
5GY
6J9
7WY
8FE
8FG
8FL
8G5
8VB
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAWIL
ABAWQ
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABQDR
ABQTM
ABROB
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABXSQ
ABYWD
ABZCX
ACBMC
ACDIW
ACDLN
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACTCJ
ACTMH
ACUIJ
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNIK
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AECCQ
AEGXH
AEHGV
AELKX
AELLO
AENCP
AENEX
AENGE
AEUPB
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFZFC
AGBYD
AGJUD
AGLNM
AHQXX
AHRGI
AIAGR
AIGNW
AIHAF
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWZO
AMVHM
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BEZIV
BGLVJ
BJBOZ
BKOMP
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
D1I
DOHLZ
DQDLB
DSRWC
DWQXO
EBS
ECEWR
EGQIC
EJD
F5P
FEDTE
FRNLG
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
H~9
IH6
IOEEP
IOO
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KB.
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M2O
M7S
NIKVX
NZEOI
O9-
P0-
P2P
P62
PADUT
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UT1
WFFJZ
YYP
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
~02
AAXMD
AAYXX
AFFHD
AKMAY
CITATION
PQGLB
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
XX2
1XC
VOOES
ID FETCH-LOGICAL-c467t-cf2da5260c9407eb4ecf98b6430a8989a3bc501e810bb5702224638a9da8be743
IEDL.DBID 7WY
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388297500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8678
IngestDate Tue Oct 14 20:43:25 EDT 2025
Fri Nov 07 13:41:43 EST 2025
Thu Oct 02 09:46:55 EDT 2025
Sat Aug 23 12:35:44 EDT 2025
Sat Nov 29 03:53:53 EST 2025
Tue Nov 18 21:51:20 EST 2025
Fri Jun 20 01:29:07 EDT 2025
Wed Jun 18 05:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Random geometric graph
diameter
Secondary 68R10
Primary 05C80
Euclidean distance
graph distance
Graph distance
Diameter 2010 Mathematics Subject Classification: Primary 05C80 Secondary 68R10
Random geometric graphs
Language English
License https://www.cambridge.org/core/terms
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-cf2da5260c9407eb4ecf98b6430a8989a3bc501e810bb5702224638a9da8be743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/308581
PQID 2010878941
PQPubID 31672
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_01291932v1
csuc_recercat_oai_recercat_cat_2072_308581
proquest_miscellaneous_1845839234
proquest_journals_2010878941
crossref_citationtrail_10_1017_apr_2016_31
crossref_primary_10_1017_apr_2016_31
jstor_primary_44985405
cambridge_journals_10_1017_apr_2016_31
PublicationCentury 2000
PublicationDate 20160900
20160901
2016-09-00
2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Advances in applied probability
PublicationTitleAlternate Adv. Appl. Probab
PublicationYear 2016
Publisher Cambridge University Press
Applied Probability Trust
Publisher_xml – name: Cambridge University Press
– name: Applied Probability Trust
References S0001867816000318_ref1
Goel (S0001867816000318_ref5) 2004
S0001867816000318_ref10
S0001867816000318_ref4
S0001867816000318_ref3
S0001867816000318_ref2
S0001867816000318_ref9
Muthukrishnan (S0001867816000318_ref7) 2005
Penrose (S0001867816000318_ref8) 1997; 7
S0001867816000318_ref6
References_xml – ident: S0001867816000318_ref10
  doi: 10.1017/CBO9781139004114.009
– ident: S0001867816000318_ref2
  doi: 10.1007/s00453-006-0172-y
– ident: S0001867816000318_ref3
  doi: 10.1137/0109045
– ident: S0001867816000318_ref9
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– start-page: 580
  volume-title: Proceedings of the 36th Annual ACM Symposium on Theory of Computing
  year: 2004
  ident: S0001867816000318_ref5
– volume: 7
  start-page: 340
  year: 1997
  ident: S0001867816000318_ref8
  article-title: The longest edge of the random minimal spanning tree
  publication-title: Ann. Appl. Prob.
  doi: 10.1214/aoap/1034625335
– start-page: 989
  volume-title: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
  year: 2005
  ident: S0001867816000318_ref7
– ident: S0001867816000318_ref6
  doi: 10.1007/s00454-012-9482-9
– ident: S0001867816000318_ref1
  doi: 10.1137/1.9781611973075.114
– ident: S0001867816000318_ref4
  doi: 10.1007/978-3-642-25591-5_21
SSID ssj0003780
Score 2.25007
Snippet Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The...
Given any two vertices u, υ of a random geometric graph g(n, r), denote by dE(u, υ) their Euclidean distance and by dG(u, υ) their graph distance. The problem...
Given any two vertices u , v of a random geometric graph G( n , r ), denote by d E ( u , v ) their Euclidean distance and by d E ( u , v ) their graph...
Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The...
Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v) their Euclidean distance and by dE(u, v) their graph distance. The problem...
Given any two vertices u, v of a random geometric graph G(n, r), denote by d_E(u, v) their Euclidean distance and by d_G(u, v) their graph distance. The...
SourceID hal
csuc
proquest
crossref
jstor
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 848
SubjectTerms 60 Probability theory and stochastic processes
60D05 Geometric probability, stochastic geometry, random sets
Asymptotic properties
Classificació AMS
Demutualization
diameter
Estimates
Euclidean distance
Euclidean geometry
graph distance
Graph theory
Graphs
Lower bounds
Matemàtiques i estadística
Mathematics
Probabilitat
Probability
Random geometric graph
State regulation
Symbols
Upper bounds
Àrees temàtiques de la UPC
Title On the relation between graph distance and Euclidean distance in random geometric graphs
URI https://www.cambridge.org/core/product/identifier/S0001867816000318/type/journal_article
https://www.jstor.org/stable/44985405
https://www.proquest.com/docview/2010878941
https://www.proquest.com/docview/1845839234
https://recercat.cat/handle/2072/308581
https://inria.hal.science/hal-01291932
Volume 48
WOSCitedRecordID wos000388297500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: M0C
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: P5Z
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: K7-
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: M7S
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: KB.
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection数据库
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: 7WY
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: BENPR
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 0001-8678
  databaseCode: M2O
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44E98D1RGJNBEw9I3pLGqe0ntE2dJsG6ig9ReLH8FVZpS0rT7u_nLnFTIT5eeMhJTi-O3Dvf_Wxf7gjZL6xT4Dcty701jBsnmfRFwRJpEiEAQ1hRNMUmxHgsp1M1iRtudQyrXNvExlD7yuEe-SGe2kohFU_fzn8wrBqFp6uxhMZtsgUvzLGCgfjytbPEmZDtJyiwZJZgleP3eZgy2swxGWg6PMDqcpusCr94p56rVw58ziWGSLbRir9Z7MYNnd7_3wE8IPciAKVHrcY8JLdC-Yhsn3fZW-vHZHpRUmjSRQyUozGYizbZralHyAm6Qk3p6WjlrmY-mHJze1ZScIC-uqbfQ3WNFbtc-2T9hHw-HX06OWOxAgNzYECXzBUDb3JY8jgFC79geXCFkhZQTGKw7qTJrMuTNMg0sTYXuHjkMKGN8kbaAOBkh_TKqgxPCRVGAvhQfshVxvNsqIIF5VFpZkUYhjTrk9edFHScR7VuY9CEBnFpFJfO0j55sxaRdjGPOZbTuPoz837HPG_Td_ytT5C1BicTFs4sNSbd7hp4DRIx0BngUwnMr0Ajuu6Q9ezovcZ7uKuHiPgGmHYahenYOFcS0XGf7K7VYzPMjW70ycvuZ5joeHpjylCt4K-QeMQNeJw_-3cXz8ldHFYbCLdLesvFKrwgd9zNclYv9poZske2jkfjyQdovRMM6fEB0PPkBOngAqn4CHSSf_sJ9I4eRQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQceFcECiyocEAy-LH27h4QqqBVqqSBQ5Fy2-7LEKm1Q5wU8af4jcz4FSEetx44-GB7vNLa38w3452dIWQ3N1YCb5ogdUYHTFsRCJfnQSh0yDn4EIbndbMJPp2K2Ux-3CI_ur0wmFbZ2cTaULvS4j_y17hqK7iQLHq7-Bpg1yhcXe1aaDSwGPvv3yBkq94cvofv-zyOD_aP342CtqtAYMEorAKbx06n4MZbCcGMN8zbXAoDzBxq7KWoE2PTMPIiCo1JOQZEDECqpdPCeCBcGPcSucwSkaFGjXnQW_6Ei2bLC4ToAlig3Q-IJar1AouPRtkr7Ga3qeLwCxsObLW2wHFfMCWzyY78jSFq2ju4-b-9sFvkRutg071GI26TLV_cIdeP-uq01V0y-1BQOKXLNhGQtslqtK7eTR261KALVBeO7q_t6dx5XWwuzwsKBO_KM_rZl2fYkcw2T1b3yKcLmdo2GRRl4e8TyrUA50q6jMmEpUkmvQHlkFFiuM98lAzJi_6rq9ZOVKrJseMK4KEQHiqJhuRlBwll2zrt2C7k9M_Cu73woilP8rcxAVsKSNQvrV4pLCren-ARhzxWCfjfAoSfAQL74VB0tDdReA3_WqLHfw5C2zVAezHGpEDvf0h2OjhuprnB4pA87W-DIcPVKV34cg2vQuASPsQb7MG_h3hCro6OjyZqcjgdPyTXcIpN0t8OGayWa_-IXLHnq3m1fFxrJyUnF43uny_Lct8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+relation+between+graph+distance+and+Euclidean+distance+in+random+geometric+graphs&rft.jtitle=Advances+in+applied+probability&rft.au=Diaz%2C+J&rft.au=Mitsche%2C+D&rft.au=Perarnau%2C+G&rft.au=Perez-Gimenez%2C+X&rft.date=2016-09-01&rft.issn=0001-8678&rft.volume=48&rft.issue=3&rft.spage=848&rft.epage=848&rft_id=info:doi/10.1017%2Fapr.2016.31&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon