On the relation between graph distance and Euclidean distance in random geometric graphs
Given any two vertices u, v of a random geometric graph G(n, r), denote by d E (u, v) their Euclidean distance and by d E (u, v) their graph distance. The problem of finding upper bounds on d G (u, v) conditional on d E (u, v) that hold asymptotically almost surely has received quite a bit of attent...
Uloženo v:
| Vydáno v: | Advances in applied probability Ročník 48; číslo 3; s. 848 - 864 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
01.09.2016
Applied Probability Trust |
| Témata: | |
| ISSN: | 0001-8678, 1475-6064 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given any two vertices u, v of a random geometric graph G(n, r), denote by d
E
(u, v) their Euclidean distance and by d
E
(u, v) their graph distance. The problem of finding upper bounds on d
G
(u, v) conditional on d
E
(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d
E
(u, v) conditional on d
E
(u, v). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0001-8678 1475-6064 |
| DOI: | 10.1017/apr.2016.31 |