Roadmap on emerging hardware and technology for machine learning

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental li...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nanotechnology Ročník 32; číslo 1; s. 012002 - 12046
Hlavní autori: Berggren, Karl, Xia, Qiangfei, Likharev, Konstantin K, Strukov, Dmitri B, Jiang, Hao, Mikolajick, Thomas, Querlioz, Damien, Salinga, Martin, Erickson, John R, Pi, Shuang, Xiong, Feng, Lin, Peng, Li, Can, Chen, Yu, Xiong, Shisheng, Hoskins, Brian D, Daniels, Matthew W, Madhavan, Advait, Liddle, James A, McClelland, Jabez J, Yang, Yuchao, Rupp, Jennifer, Nonnenmann, Stephen S, Cheng, Kwang-Ting, Gong, Nanbo, Lastras-Montaño, Miguel Angel, Talin, A Alec, Salleo, Alberto, Shastri, Bhavin J, de Lima, Thomas Ferreira, Prucnal, Paul, Tait, Alexander N, Shen, Yichen, Meng, Huaiyu, Roques-Carmes, Charles, Cheng, Zengguang, Bhaskaran, Harish, Jariwala, Deep, Wang, Han, Shainline, Jeffrey M, Segall, Kenneth, Yang, J Joshua, Roy, Kaushik, Datta, Suman, Raychowdhury, Arijit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England IOP Publishing 01.01.2021
Predmet:
ISSN:0957-4484, 1361-6528, 1361-6528
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.