Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression
In this paper, based on ideas from lossy data coding and compression, we present a simple but effective technique for segmenting multivariate mixed data that are drawn from a mixture of Gaussian distributions, which are allowed to be almost degenerate. The goal is to find the optimal segmentation th...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 29; číslo 9; s. 1546 - 1562 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.09.2007
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, based on ideas from lossy data coding and compression, we present a simple but effective technique for segmenting multivariate mixed data that are drawn from a mixture of Gaussian distributions, which are allowed to be almost degenerate. The goal is to find the optimal segmentation that minimizes the overall coding length of the segmented data, subject to a given distortion. By analyzing the coding length/rate of mixed data, we formally establish some strong connections of data segmentation to many fundamental concepts in lossy data compression and rate-distortion theory. We show that a deterministic segmentation is approximately the (asymptotically) optimal solution for compressing mixed data. We propose a very simple and effective algorithm that depends on a single parameter, the allowable distortion. At any given distortion, the algorithm automatically determines the corresponding number and dimension of the groups and does not involve any parameter estimation. Simulation results reveal intriguing phase-transition-like behaviors of the number of segments when changing the level of distortion or the amount of outliers. Finally, we demonstrate how this technique can be readily applied to segment real imagery and bioinformatic data. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0162-8828 1939-3539 |
| DOI: | 10.1109/TPAMI.2007.1085 |