Pathogen- and plant-derived peptides trigger plant immunity
•Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune sign...
Uložené v:
| Vydané v: | Peptides (New York, N.Y. : 1980) Ročník 144; s. 170611 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.10.2021
|
| Predmet: | |
| ISSN: | 0196-9781, 1873-5169, 1873-5169 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune signaling cascades.
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling. |
|---|---|
| AbstractList | Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca²⁺ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling. Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling. Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling. •Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune signaling cascades. Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling. |
| ArticleNumber | 170611 |
| Author | Kawasaki, Tsutomu Yamaguchi, Koji |
| Author_xml | – sequence: 1 givenname: Koji surname: Yamaguchi fullname: Yamaguchi, Koji organization: Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan – sequence: 2 givenname: Tsutomu orcidid: 0000-0003-2579-2000 surname: Kawasaki fullname: Kawasaki, Tsutomu email: t-kawasaki@nara.kindai.ac.jp organization: Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34303752$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTlPAzEQhS0URA74C1FKmg32en0JClDEJUWCAmrL2JPgKHtgO5Hy79loEwqaVKPRfG_Gfm-IelVdAUJjgqcEE36zmjbQJO8gTnOckykRmBNyhgZECpoxwlUPDTBRPFNCkj4axrjCGBeFkheoTwuKqWD5AN2-m_RdL6HKJqZyk2ZtqpQ5CH4LbXc4MUnBL5cQuvHEl-Wm8ml3ic4XZh3h6lBH6PPp8WP2ks3fnl9nD_PMFlykjBjnjBCYUQwUQHJD5IJzULli0jKQSmJDKZULLKTFXBplc6Ws4hbazzg6Qtfd3ibUPxuISZc-Wli3j4F6E3XOKS94Lik_jTLGKOUMixYdH9DNVwlON8GXJuz00ZsW4B1gQx1jgMUfQrDeh6BX-uiQ3oeguxBa4d0_ofXJJF9XKRi_Pi2_7-TQerr1EHS0HioLzgewSbvan1rxC8qNpXg |
| CitedBy_id | crossref_primary_10_1021_acs_jafc_5c00286 crossref_primary_10_1016_j_tifs_2021_08_037 crossref_primary_10_1038_s41477_025_02086_7 crossref_primary_10_1094_PHYTO_12_24_0408_R crossref_primary_10_1093_jxb_eraf180 crossref_primary_10_1007_s11627_025_10518_4 crossref_primary_10_1134_S1022795424700881 crossref_primary_10_1146_annurev_phyto_021621_120943 crossref_primary_10_1111_jipb_13566 crossref_primary_10_3390_horticulturae10080857 crossref_primary_10_3390_plants14152452 crossref_primary_10_1039_D5NR00953G crossref_primary_10_3389_fpls_2022_852808 crossref_primary_10_1016_j_cell_2025_07_044 |
| Cites_doi | 10.1073/pnas.0705147104 10.1111/tpj.12710 10.1073/pnas.0703343104 10.1038/s41467-021-20932-y 10.1111/tpj.15022 10.1073/pnas.1007568107 10.1126/science.aal2541 10.1038/s41477-018-0106-0 10.1038/nrg2812 10.1038/s41422-019-0219-7 10.1016/j.tplants.2017.07.005 10.1073/pnas.1312099111 10.1023/A:1005986004615 10.1093/jxb/ert330 10.1073/pnas.1000675107 10.1093/jxb/ery454 10.1038/s41467-020-15601-5 10.1126/science.1215584 10.7554/eLife.15075 10.1093/jxb/erv236 10.1038/s41586-019-1413-y 10.1073/pnas.1220015110 10.1126/science.1171661 10.1016/j.cell.2020.04.028 10.1016/S1097-2765(00)80265-8 10.1371/journal.pgen.1006832 10.1016/j.cub.2015.07.068 10.1016/j.chom.2021.02.008 10.1371/journal.ppat.1004331 10.1111/j.1365-313X.2010.04324.x 10.1104/pp.113.230698 10.1105/tpc.020834 10.1126/science.1069607 10.1126/science.aau1279 10.3389/fpls.2014.00178 10.1105/tpc.111.084301 10.1126/science.aav0748 10.1038/nature05999 10.1074/jbc.M110.116657 10.1093/jxb/erv071 10.1111/j.1365-313X.2008.03598.x 10.1111/nph.17128 10.7554/eLife.03766 10.15252/embr.201745324 10.1105/tpc.112.107904 10.1038/ni.3124 10.1016/j.chom.2021.02.006 10.1111/j.1365-313X.2010.04282.x 10.1038/s41586-020-2702-1 10.1073/pnas.1112862108 10.1073/pnas.0705306104 10.1038/s41586-021-03316-6 10.1126/science.1243825 10.1073/pnas.1818275116 10.1038/nature14858 10.3389/fimmu.2014.00309 10.1093/pcp/pcx042 10.1073/pnas.0603729103 10.1073/pnas.93.15.7623 10.1016/j.chom.2013.02.007 10.1111/tpj.12050 10.1111/tpj.13808 10.1074/jbc.M109.097394 10.1146/annurev-arplant-042817-040540 10.1016/j.it.2007.08.004 10.1073/pnas.1907799117 10.1038/s41477-018-0116-y 10.1074/jbc.M304159200 10.1016/j.chom.2014.02.009 10.1104/pp.111.173096 10.1073/pnas.0602328103 10.1105/tpc.112.102475 10.1007/s00299-007-0494-5 10.1002/embj.201284303 10.1126/science.aar7486 10.15252/embj.201591807 10.1038/cr.2014.161 10.1105/tpc.114.131185 10.1104/pp.17.01757 10.1016/j.molcel.2014.02.021 10.1073/pnas.1214668110 10.1111/j.1365-313X.2012.04950.x 10.1038/nplants.2016.128 10.1105/tpc.109.068874 10.1073/pnas.0909705107 10.1038/nplants.2015.140 10.1016/j.cell.2006.03.037 10.1371/journal.ppat.1002130 10.1038/35081107 10.1111/nph.14568 10.1126/science.343.6168.290 10.1016/j.pbi.2014.04.007 10.1016/j.pbi.2010.09.004 10.1186/s12870-014-0374-4 10.1104/pp.110.166710 10.1146/annurev-phyto-082712-102314 10.1074/jbc.M109.096842 10.1126/science.1236011 10.1016/j.chom.2010.03.007 10.1111/tpj.12535 10.1105/tpc.104.026765 10.1016/S1369-5266(02)00285-6 10.1093/mp/ssn047 10.1038/nri.2016.77 10.1016/j.tplants.2014.06.005 10.1073/pnas.1203458110 10.1016/j.molp.2017.01.006 10.1073/pnas.2018415117 10.1016/j.pbi.2014.07.007 10.1073/pnas.0508882103 10.1038/nmicrobiol.2016.43 10.1105/tpc.17.00981 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.peptides.2021.170611 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1873-5169 |
| ExternalDocumentID | 34303752 10_1016_j_peptides_2021_170611 S0196978121001194 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 3O- 4.4 457 4G. 53G 5VS 6DK 6DL 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABCQJ ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMQ HVGLF HZ~ IHE J1W KOM LX3 M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSU SSZ T5K TEORI WUQ X7M XJT ZGI ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c467t-1adda770530e3ee86a18f66e92958c5e8980a3338f078c068a9c299c96ce873d3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687890400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-9781 1873-5169 |
| IngestDate | Sat Sep 27 22:36:36 EDT 2025 Wed Oct 01 17:05:30 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Sat Nov 29 07:22:31 EST 2025 Tue Nov 18 22:35:24 EST 2025 Fri Feb 23 02:43:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PAMP Phytocytokine Pattern-triggered immunity Pattern-recognition receptor DAMP |
| Language | English |
| License | Copyright © 2021 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c467t-1adda770530e3ee86a18f66e92958c5e8980a3338f078c068a9c299c96ce873d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2579-2000 |
| PMID | 34303752 |
| PQID | 2555336507 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636462836 proquest_miscellaneous_2555336507 pubmed_primary_34303752 crossref_primary_10_1016_j_peptides_2021_170611 crossref_citationtrail_10_1016_j_peptides_2021_170611 elsevier_sciencedirect_doi_10_1016_j_peptides_2021_170611 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Peptides (New York, N.Y. : 1980) |
| PublicationTitleAlternate | Peptides |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Lee, Lal, Lin, Ma, Liu, Castro, Toruno, Dinesh-Kumar, Coaker (bib0525) 2020; 11 Malinovsky, Fangel, Willats (bib0065) 2014; 5 Liu, Li, Ao, Qu, Li, Su, Zhang, Liu, Feng, Qi, He, Wang, Wang (bib0365) 2012; 24 Van der Does, Boutrot, Engelsdorf, Rhodes, McKenna, Vernhettes, Koevoets, Tintor, Veerabagu, Miedes, Segonzac, Roux, Breda, Hardtke, Molina, Rep, Testerink, Mouille, Höfte, Hamann, Zipfel (bib0220) 2017; 13 Yan, Zhao, Shi, Li, Wang, Tang (bib0565) 2018; 176 Zipfel, Kunze, Chinchilla, Caniard, Jones, Boller, Felix (bib0115) 2006; 125 Faulkner, Petutschnig, Benitez-Alfonso, Beck, Robatzek, Lipka, Maule (bib0435) 2013; 110 Dodds, Rathjen (bib0005) 2010; 11 Cai, Lewis, Yan, Liu, Clarke, Campanile, Almeida, Studholme, Lindeberg, Schneider, Zaccardelli, Setubal, Morales-Lizcano, Bernal, Coaker, Baker, Bender, Leman, Vinatzer (bib0080) 2011; 7 Yoon, Kurnasov, Natarajan, Hong, Gudkov, Osterman, Wilson (bib0090) 2012; 335 Schulze, Mentzel, Jehle, Mueller, Beeler, Boller, Felix, Chinchilla (bib0390) 2010; 285 Colaianni, Parys, Lee, Conway, Kim, Edelbacher, Mucyn, Madalinski, Law, Jones, Belkhadir, Dangl (bib0105) 2021; 29 Steinbrenner, Munoz-Amatriain, Chaparro, Aguilar-Venegas, Lo, Okuda, Glauser, Dongiovanni, Shi, Hall, Crubaugh, Holton, Zipfel, Abagyan, Turlings, Close, Huffaker, Schmelz (bib0195) 2020; 117 Chinchilla, Zipfel, Robatzek, Kemmerling, Nurnberger, Jones, Felix, Boller (bib0380) 2007; 448 Liang, Zhou (bib0465) 2018; 69 Wang, Einig, Almeida-Trapp, Albert, Fliegmann, Mithöfer, Felix (bib0285) 2018; 4 Li, Li, Yu, Zhou, Liang, Liu, Cai, Gao, Zhang, Wang, Chen, Zhou (bib0520) 2014; 15 Huffaker, Ryan (bib0125) 2007; 104 Kadota, Sklenar, Derbyshire, Stransfeld, Asai, Ntoukakis, Jones, Shirasu, Menke, Jones, Zipfel (bib0045) 2014; 54 Lage, Longo, Branco, da Costa, Buzzo Cde, Bortoluci (bib0095) 2014; 5 Hou, Liu, Huang, Luo, Liu, Wang, Mu, Han, Chai, Shan, He (bib0215) 2021 Tang, Han, Sun, Zhang, Gong, Chai (bib0455) 2015; 25 Jurca, Bottka, Fehér (bib0475) 2008; 27 Igarashi, Tsuda, Katagiri (bib0265) 2012; 71 Brutus, Sicilia, Macone, Cervone, De Lorenzo (bib0330) 2010; 107 Cheval, Samwald, Johnston, de Keijzer, Breakspear, Liu, Bellandi, Kadota, Zipfel, Faulkner (bib0440) 2020; 117 Krol, Mentzel, Chinchilla, Boller, Felix, Kemmerling, Postel, Arents, Jeworutzki, Al-Rasheid, Becker, Hedrich (bib0145) 2010; 285 Sung, Outram, Breen, Wang, Dagvadorj, Winterberg, Kobe, Williams, Solomon (bib0300) 2021; 229 Meng, Zhang (bib0050) 2013; 51 Choi, Tanaka, Cao, Qi, Qiu, Liang, Lee, Stacey (bib0335) 2014; 343 Rhodes, Yang, Moussu, Boutrot, Santiago, Zipfel (bib0210) 2021; 12 Bednarek, Osbourn (bib0060) 2009; 324 Cao, Liang, Tanaka, Nguyen, Jedrzejczak, Joachimiak, Stacey (bib0325) 2014; 3 Rubartelli, Lotze (bib0030) 2007; 28 Beloshistov, Dreizler, Galiullina, Tuzhikov, Serebryakova, Reichardt, Shaw, Taliansky, Pfannstiel, Chichkova, Stintzi, Schaller, Vartapetian (bib0280) 2018; 218 Wang, Li, Han, Zhang, Wang, Lin, Chang, Yang, Chai (bib0460) 2015; 525 Willmann, Lajunen, Erbs, Newman, Kolb, Tsuda, Katagiri, Fliegmann, Bono, Cullimore, Jehle, Götz, Kulik, Molinaro, Lipka, Gust, Nürnberger (bib0370) 2011; 108 Schmelz, Carroll, LeClere, Phipps, Meredith, Chourey, Alborn, Teal (bib0190) 2006; 103 Kaku, Nishizawa, Ishii-Minami, Akimoto-Tomiyama, Dohmae, Takio, Minami, Shibuya (bib0360) 2006; 103 Bi, Zhou, Wang, Li, Rao, Wu, Zhang, Menke, Chen, Zhou (bib0555) 2018; 30 Wang, Wang, Zhang, Zhu, Dai, Yu, He, Xu, Wang (bib0570) 2017; 10 Lori, van Verk, Hander, Schatowitz, Klauser, Flury, Gehring, Boller, Bartels (bib0185) 2015; 66 Li (bib0400) 2010; 13 Yamaguchi, Huffaker, Bryan, Tax, Ryan (bib0150) 2010; 22 Hander, Fernández-Fernández, Kumpf, Willems, Schatowitz, Rombaut, Staes, Nolf, Pottie, Yao, Gonçalves, Pavie, Boller, Gevaert, Van Breusegem, Bartels, Stael (bib0135) 2019; 363 Zhang, Kars, Essenstam, Liebrand, Wagemakers, Elberse, Tagkalaki, Tjoitang, van den Ackerveken, van Kan (bib0350) 2014; 164 Santiago, Brandt, Wildhagen, Hohmann, Hothorn, Butenko, Hothorn (bib0410) 2016; 5 Thor, Jiang, Michard, George, Scherzer, Huang, Dindas, Derbyshire, Leitão, DeFalco, Köster, Hunter, Kimura, Gronnier, Stransfeld, Kadota, Bücherl, Charpentier, Wrzaczek, MacLean, Oldroyd, Menke, Roelfsema, Hedrich, Feijó, Zipfel (bib0545) 2020; 588 Huffaker, Dafoe, Schmelz (bib0165) 2011; 155 Hayafune, Berisio, Marchetti, Silipo, Kayama, Desaki, Arima, Squeglia, Ruggiero, Tokuyasu, Molinaro, Kaku, Shibuya (bib0430) 2014; 111 Constabel, Yip, Ryan (bib0275) 1998; 36 Jonak (bib0550) 2002; 5 Ranf, Eschen-Lippold, Frohlich, Westphal, Scheel, Lee (bib0530) 2014; 14 Kunze, Zipfel, Robatzek, Niehaus, Boller, Felix (bib0110) 2004; 16 Yamada, Yamashita-Yamada, Hirase, Fujiwara, Tsuda, Hiruma, Saijo (bib0160) 2016; 35 Gust, Felix (bib0415) 2014 Matsubayashi, Ogawa, Morita, Sakagami (bib0255) 2002; 296 Poretsky, Dressano, Weckwerth, Ruiz, Char, Shi, Abagyan, Yang, Huffaker (bib0175) 2020; 104 Wang, Liu, Zhang, Ren, Wu, Wang, Xu, Lei, Zhu, Pan, Wang, Zhang, Wang, Tan, Wang, Jin, Luo, Zhou, Zhang, Liu, Wang, Meng, Wang, Chen, Lin, Zhang, Guo, Cheng, Wang, Tian, Liu, Jiang, Wu, Wang, Zhou, Wang, Wang, Wan (bib0540) 2019; 29 Yamaguchi, Barona, Ryan, Pearce (bib0180) 2011; 156 Gully, Pelletier, Guillou, Ferrand, Aligon, Pokotylo, Perrin, Vergne, Fagard, Ruelland, Grappin, Bucher, Renou, Aubourg (bib0205) 2019; 70 Ziemann, van der Linde, Lahrmann, Acar, Kaschani, Colby, Kaiser, Ding, Schmelz, Huffaker, Holton, Zipfel, Doehlemann (bib0305) 2018; 4 Pearce, Yamaguchi, Barona, Ryan (bib0310) 2010; 107 Zhou, Zhang (bib0035) 2020; 181 Yamada, Yamaguchi, Yoshimura, Terauchi, Kawasaki (bib0055) 2017; 58 Srivastava, Liu, Howell (bib0235) 2008; 56 Shimizu, Nakano, Takamizawa, Desaki, Ishii-Minami, Nishizawa, Minami, Okada, Yamane, Kaku, Shibuya (bib0425) 2010; 64 Buscaill, Chandrasekar, Sanguankiattichai, Kourelis, Kaschani, Thomas, Morimoto, Kaiser, Preston, Ichinose, van der Hoorn (bib0070) 2019; 364 Matsubayashi, Sakagami (bib0245) 1996; 93 Tian, Hou, Ren, Wang, Zhao, Dahlbeck, Hu, Zhang, Niu, Li, Staskawicz, Luan (bib0535) 2019; 572 Meng, Chen, Mang, Liu, Yu, Gao, Torii, He, Shan (bib0405) 2015; 25 Luu, Joe, Chen, Parys, Bahar, Pruitt, Chan, Petzold, Long, Adamchak, Stewart, Belkhadir, Ronald (bib0120) 2019; 116 Yamaguchi, Pearce, Ryan (bib0140) 2006; 103 Petutschnig, Jones, Serazetdinova, Lipka, Lipka (bib0320) 2010; 285 Ross, Yamada, Hiruma, Yamashita-Yamada, Lu, Takano, Tsuda, Saijo (bib0155) 2014; 33 Shi, Shen, Qi, Yan, Nie, Chen, Zhao, Katagiri, Tang (bib0515) 2013; 25 Masachis, Segorbe, Turra, Leon-Ruiz, Furst, El Ghalid, Leonard, Lopez-Berges, Richards, Felix, Di Pietro (bib0240) 2016; 1 Zhang, Li, Xiang, Liu, Laluk, Ding, Zou, Gao, Zhang, Chen, Mengiste, Zhang, Zhou (bib0495) 2010; 7 Albert, Bohm, Albert, Feiler, Imkampe, Wallmeroth, Brancato, Raaymakers, Oome, Zhang, Krol, Grefen, Gust, Chai, Hedrich, Van den Ackerveken, Nurnberger (bib0355) 2015; 1 Huffaker, Pearce, Veyrat, Erb, Turlings, Sartor, Shen, Briggs, Vaughan, Alborn, Teal, Schmelz (bib0170) 2013; 110 Rao, Zhou, Miao, Bi, Hu, Wu, Feng, Zhang, Zhou (bib0485) 2018; 177 Bar, Sharfman, Ron, Avni (bib0345) 2010; 63 Stegmann, Monaghan, Smakowska-Luzan, Rovenich, Lehner, Holton, Belkhadir, Zipfel (bib0230) 2017; 355 Saijo, Loo, Yasuda (bib0025) 2018; 93 Bohm, Albert, Fan, Reinhard, Nurnberger (bib0015) 2014; 20 Mosher, Seybold, Rodriguez, Stahl, Davies, Dayaratne, Morillo, Wierzba, Favery, Keller, Tax, Kemmerling (bib0260) 2013; 73 Gust, Pruitt, Nürnberger (bib0040) 2017; 22 Shiu, Karlowski, Pan, Tzeng, Mayer, Li (bib0470) 2004; 16 Heese, Hann, Gimenez-Ibanez, Jones, He, Li, Schroeder, Peck, Rathjen (bib0385) 2007; 104 Sun, Nitta, Zhang, Wu, Tian, Lee, Zhang (bib0560) 2018; 19 Parys, Colaianni, Lee, Hohmann, Edelbacher, Trgovcevic, Blahovska, Lee, Mechtler, Muhari-Portik, Madalinski, Schandry, Rodriguez-Arevalo, Becker, Sonnleitner, Korte, Blasi, Geldner, Hothorn, Jones, Dangl, Belkhadir (bib0100) 2021; 29 Liebrand, van den Berg, Zhang, Smit, Cordewener, America, Sklenar, Jones, Tameling, Robatzek, Thomma, Joosten (bib0420) 2013; 110 Vij, Giri, Dansana, Kapoor, Tyagi (bib0480) 2008; 1 Bartels, Lori, Mbengue, van Verk, Klauser, Hander, Böni, Robatzek, Boller (bib0130) 2013; 64 Yuan, Jiang, Bi, Nomura, Liu, Wang, Cai, Zhou, He, Xin (bib0375) 2021; 592 Sun, Li, Macho, Han, Hu, Zipfel, Zhou, Chai (bib0450) 2013; 342 Sauter (bib0250) 2015; 66 Hind, Strickler, Boyle, Dunham, Bao, O’Doherty, Baccile, Hoki, Viox, Clarke, Vinatzer, Schroeder, Martin (bib0085) 2016; 2 Hou, Wang, Chen, Yang, Wang, Turrà, Di Pietro, Zhang (bib0200) 2014; 10 Kutschera, Dawid, Gisch, Schmid, Raasch, Gerster, Schäffer, Smakowska-Luzan, Belkhadir, Vlot, Chandler, Schellenberger, Schwudke, Ernst, Dorey, Hückelhoven, Hofmann, Ranf (bib0340) 2019; 364 Dangl, Horvath, Staskawicz (bib0010) 2013; 341 Couto, Zipfel (bib0020) 2016; 16 Shinya, Yamaguchi, Desaki, Yamada, Narisawa, Kobayashi, Maeda, Suzuki, Tanimoto, Takeda, Nakashima, Funama, Narusaka, Narusaka, Kaku, Kawasaki, Shibuya (bib0510) 2014; 79 Ranf, Gisch, Schaffer, Illig, Westphal, Knirel, Sanchez-Carballo, Zahringer, Huckelhoven, Lee, Scheel (bib0445) 2015; 16 Roux, Schwessinger, Albrecht, Chinchilla, Jones, Holton, Malinovsky, Tor, de Vries, Zipfel (bib0395) 2011; 23 Ao, Li, Feng, Xiong, Liu, Li, Wang, Wang, Liu, Wang (bib0505) 2014; 80 Miya, Albert, Shinya, Desaki, Ichimura, Shirasu, Narusaka, Kawakami, Kaku, Shibuya (bib0315) 2007; 104 Lu, Wu, Gao, Zhang, Shan, He (bib0490) 2010; 107 Chen, Lee, Cheng, Chang, Huang, Nam, Chen (bib0295) 2014; 26 Murphy, De Smet (bib0225) 2014; 19 Pearce, Moura, Stratmann, Ryan (bib0270) 2001; 411 Pearce, Ryan (bib0290) 2003; 278 Gómez-Gómez, Boller (bib0075) 2000; 5 Yamaguchi, Yamada, Ishikawa, Yoshimura, Hayashi, Uchihashi, Ishihama, Kishi-Kaboshi, Takahashi, Tsuge, Ochiai, Tada, Shimamoto, Yoshioka, Kawasaki (bib0500) 2013; 13 Pearce (10.1016/j.peptides.2021.170611_bib0270) 2001; 411 Kunze (10.1016/j.peptides.2021.170611_bib0110) 2004; 16 Chen (10.1016/j.peptides.2021.170611_bib0295) 2014; 26 Hind (10.1016/j.peptides.2021.170611_bib0085) 2016; 2 Yan (10.1016/j.peptides.2021.170611_bib0565) 2018; 176 Hou (10.1016/j.peptides.2021.170611_bib0200) 2014; 10 Shiu (10.1016/j.peptides.2021.170611_bib0470) 2004; 16 Steinbrenner (10.1016/j.peptides.2021.170611_bib0195) 2020; 117 Huffaker (10.1016/j.peptides.2021.170611_bib0170) 2013; 110 Igarashi (10.1016/j.peptides.2021.170611_bib0265) 2012; 71 Wang (10.1016/j.peptides.2021.170611_bib0460) 2015; 525 Ao (10.1016/j.peptides.2021.170611_bib0505) 2014; 80 Petutschnig (10.1016/j.peptides.2021.170611_bib0320) 2010; 285 Lage (10.1016/j.peptides.2021.170611_bib0095) 2014; 5 Meng (10.1016/j.peptides.2021.170611_bib0405) 2015; 25 Gust (10.1016/j.peptides.2021.170611_bib0040) 2017; 22 Beloshistov (10.1016/j.peptides.2021.170611_bib0280) 2018; 218 Saijo (10.1016/j.peptides.2021.170611_bib0025) 2018; 93 Kutschera (10.1016/j.peptides.2021.170611_bib0340) 2019; 364 Gully (10.1016/j.peptides.2021.170611_bib0205) 2019; 70 Van der Does (10.1016/j.peptides.2021.170611_bib0220) 2017; 13 Wang (10.1016/j.peptides.2021.170611_bib0570) 2017; 10 Yamaguchi (10.1016/j.peptides.2021.170611_bib0180) 2011; 156 Shimizu (10.1016/j.peptides.2021.170611_bib0425) 2010; 64 Parys (10.1016/j.peptides.2021.170611_bib0100) 2021; 29 Srivastava (10.1016/j.peptides.2021.170611_bib0235) 2008; 56 Cai (10.1016/j.peptides.2021.170611_bib0080) 2011; 7 Kadota (10.1016/j.peptides.2021.170611_bib0045) 2014; 54 Couto (10.1016/j.peptides.2021.170611_bib0020) 2016; 16 Huffaker (10.1016/j.peptides.2021.170611_bib0165) 2011; 155 Vij (10.1016/j.peptides.2021.170611_bib0480) 2008; 1 Yamaguchi (10.1016/j.peptides.2021.170611_bib0500) 2013; 13 Tang (10.1016/j.peptides.2021.170611_bib0455) 2015; 25 Sauter (10.1016/j.peptides.2021.170611_bib0250) 2015; 66 Constabel (10.1016/j.peptides.2021.170611_bib0275) 1998; 36 Luu (10.1016/j.peptides.2021.170611_bib0120) 2019; 116 Murphy (10.1016/j.peptides.2021.170611_bib0225) 2014; 19 Dangl (10.1016/j.peptides.2021.170611_bib0010) 2013; 341 Zhang (10.1016/j.peptides.2021.170611_bib0350) 2014; 164 Masachis (10.1016/j.peptides.2021.170611_bib0240) 2016; 1 Choi (10.1016/j.peptides.2021.170611_bib0335) 2014; 343 Yamada (10.1016/j.peptides.2021.170611_bib0055) 2017; 58 Matsubayashi (10.1016/j.peptides.2021.170611_bib0245) 1996; 93 Buscaill (10.1016/j.peptides.2021.170611_bib0070) 2019; 364 Colaianni (10.1016/j.peptides.2021.170611_bib0105) 2021; 29 Dodds (10.1016/j.peptides.2021.170611_bib0005) 2010; 11 Sun (10.1016/j.peptides.2021.170611_bib0450) 2013; 342 Liang (10.1016/j.peptides.2021.170611_bib0465) 2018; 69 Tian (10.1016/j.peptides.2021.170611_bib0535) 2019; 572 Li (10.1016/j.peptides.2021.170611_bib0520) 2014; 15 Yamada (10.1016/j.peptides.2021.170611_bib0160) 2016; 35 Gust (10.1016/j.peptides.2021.170611_bib0415) 2014 Bednarek (10.1016/j.peptides.2021.170611_bib0060) 2009; 324 Zipfel (10.1016/j.peptides.2021.170611_bib0115) 2006; 125 Meng (10.1016/j.peptides.2021.170611_bib0050) 2013; 51 Lu (10.1016/j.peptides.2021.170611_bib0490) 2010; 107 Bohm (10.1016/j.peptides.2021.170611_bib0015) 2014; 20 Krol (10.1016/j.peptides.2021.170611_bib0145) 2010; 285 Hayafune (10.1016/j.peptides.2021.170611_bib0430) 2014; 111 Matsubayashi (10.1016/j.peptides.2021.170611_bib0255) 2002; 296 Liu (10.1016/j.peptides.2021.170611_bib0365) 2012; 24 Santiago (10.1016/j.peptides.2021.170611_bib0410) 2016; 5 Li (10.1016/j.peptides.2021.170611_bib0400) 2010; 13 Heese (10.1016/j.peptides.2021.170611_bib0385) 2007; 104 Sun (10.1016/j.peptides.2021.170611_bib0560) 2018; 19 Chinchilla (10.1016/j.peptides.2021.170611_bib0380) 2007; 448 Thor (10.1016/j.peptides.2021.170611_bib0545) 2020; 588 Jonak (10.1016/j.peptides.2021.170611_bib0550) 2002; 5 Poretsky (10.1016/j.peptides.2021.170611_bib0175) 2020; 104 Rhodes (10.1016/j.peptides.2021.170611_bib0210) 2021; 12 Huffaker (10.1016/j.peptides.2021.170611_bib0125) 2007; 104 Yamaguchi (10.1016/j.peptides.2021.170611_bib0140) 2006; 103 Zhang (10.1016/j.peptides.2021.170611_bib0495) 2010; 7 Miya (10.1016/j.peptides.2021.170611_bib0315) 2007; 104 Schulze (10.1016/j.peptides.2021.170611_bib0390) 2010; 285 Mosher (10.1016/j.peptides.2021.170611_bib0260) 2013; 73 Shinya (10.1016/j.peptides.2021.170611_bib0510) 2014; 79 Willmann (10.1016/j.peptides.2021.170611_bib0370) 2011; 108 Cheval (10.1016/j.peptides.2021.170611_bib0440) 2020; 117 Gómez-Gómez (10.1016/j.peptides.2021.170611_bib0075) 2000; 5 Jurca (10.1016/j.peptides.2021.170611_bib0475) 2008; 27 Ross (10.1016/j.peptides.2021.170611_bib0155) 2014; 33 Lori (10.1016/j.peptides.2021.170611_bib0185) 2015; 66 Shi (10.1016/j.peptides.2021.170611_bib0515) 2013; 25 Bi (10.1016/j.peptides.2021.170611_bib0555) 2018; 30 Schmelz (10.1016/j.peptides.2021.170611_bib0190) 2006; 103 Zhou (10.1016/j.peptides.2021.170611_bib0035) 2020; 181 Cao (10.1016/j.peptides.2021.170611_bib0325) 2014; 3 Brutus (10.1016/j.peptides.2021.170611_bib0330) 2010; 107 Ranf (10.1016/j.peptides.2021.170611_bib0530) 2014; 14 Faulkner (10.1016/j.peptides.2021.170611_bib0435) 2013; 110 Ranf (10.1016/j.peptides.2021.170611_bib0445) 2015; 16 Lee (10.1016/j.peptides.2021.170611_bib0525) 2020; 11 Sung (10.1016/j.peptides.2021.170611_bib0300) 2021; 229 Yuan (10.1016/j.peptides.2021.170611_bib0375) 2021; 592 Hander (10.1016/j.peptides.2021.170611_bib0135) 2019; 363 Stegmann (10.1016/j.peptides.2021.170611_bib0230) 2017; 355 Ziemann (10.1016/j.peptides.2021.170611_bib0305) 2018; 4 Bar (10.1016/j.peptides.2021.170611_bib0345) 2010; 63 Roux (10.1016/j.peptides.2021.170611_bib0395) 2011; 23 Albert (10.1016/j.peptides.2021.170611_bib0355) 2015; 1 Kaku (10.1016/j.peptides.2021.170611_bib0360) 2006; 103 Wang (10.1016/j.peptides.2021.170611_bib0540) 2019; 29 Pearce (10.1016/j.peptides.2021.170611_bib0310) 2010; 107 Bartels (10.1016/j.peptides.2021.170611_bib0130) 2013; 64 Rao (10.1016/j.peptides.2021.170611_bib0485) 2018; 177 Malinovsky (10.1016/j.peptides.2021.170611_bib0065) 2014; 5 Rubartelli (10.1016/j.peptides.2021.170611_bib0030) 2007; 28 Wang (10.1016/j.peptides.2021.170611_bib0285) 2018; 4 Liebrand (10.1016/j.peptides.2021.170611_bib0420) 2013; 110 Hou (10.1016/j.peptides.2021.170611_bib0215) 2021 Yamaguchi (10.1016/j.peptides.2021.170611_bib0150) 2010; 22 Pearce (10.1016/j.peptides.2021.170611_bib0290) 2003; 278 Yoon (10.1016/j.peptides.2021.170611_bib0090) 2012; 335 |
| References_xml | – volume: 15 start-page: 329 year: 2014 end-page: 338 ident: bib0520 article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity publication-title: Cell Host Microbe – volume: 1 start-page: 16043 year: 2016 ident: bib0240 article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection publication-title: Nat. Microbiol. – volume: 56 start-page: 219 year: 2008 end-page: 227 ident: bib0235 article-title: Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis publication-title: Plant J. – volume: 7 start-page: 290 year: 2010 end-page: 301 ident: bib0495 article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector publication-title: Cell Host Microbe – volume: 11 start-page: 1838 year: 2020 ident: bib0525 article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD publication-title: Nat. Commun. – volume: 13 year: 2017 ident: bib0220 article-title: The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses publication-title: PLoS Genet. – volume: 71 start-page: 194 year: 2012 end-page: 204 ident: bib0265 article-title: The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity publication-title: Plant J. – volume: 155 start-page: 1325 year: 2011 end-page: 1338 ident: bib0165 article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance publication-title: Plant Physiol. – volume: 5 start-page: 1003 year: 2000 end-page: 1011 ident: bib0075 article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol. Cell – volume: 93 start-page: 592 year: 2018 end-page: 613 ident: bib0025 article-title: Pattern recognition receptors and signaling in plant-microbe interactions publication-title: Plant J. – volume: 73 start-page: 469 year: 2013 end-page: 482 ident: bib0260 article-title: The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner publication-title: Plant J. – volume: 19 year: 2018 ident: bib0560 article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling publication-title: EMBO Rep. – volume: 3 year: 2014 ident: bib0325 article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1 publication-title: Elife – volume: 80 start-page: 1072 year: 2014 end-page: 1084 ident: bib0505 article-title: OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity publication-title: Plant J. – volume: 411 start-page: 817 year: 2001 end-page: 820 ident: bib0270 article-title: Production of multiple plant hormones from a single polyprotein precursor publication-title: Nature – volume: 525 start-page: 265 year: 2015 end-page: 268 ident: bib0460 article-title: Allosteric receptor activation by the plant peptide hormone phytosulfokine publication-title: Nature – volume: 572 start-page: 131 year: 2019 end-page: 135 ident: bib0535 article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity publication-title: Nature – volume: 324 start-page: 746 year: 2009 end-page: 748 ident: bib0060 article-title: Plant-microbe interactions: chemical diversity in plant defense publication-title: Science – volume: 5 start-page: 309 year: 2014 ident: bib0095 article-title: Emerging concepts about NAIP/NLRC4 inflammasomes publication-title: Front. Immunol. – volume: 28 start-page: 429 year: 2007 end-page: 436 ident: bib0030 article-title: Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox publication-title: Trends Immunol. – volume: 66 start-page: 5315 year: 2015 end-page: 5325 ident: bib0185 article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling publication-title: J. Exp. Bot. – volume: 104 start-page: 12217 year: 2007 end-page: 12222 ident: bib0385 article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 448 start-page: 497 year: 2007 end-page: 500 ident: bib0380 article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature – volume: 70 start-page: 1349 year: 2019 end-page: 1365 ident: bib0205 article-title: The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana publication-title: J. Exp. Bot. – volume: 110 start-page: 10010 year: 2013 end-page: 10015 ident: bib0420 article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 103 start-page: 8894 year: 2006 end-page: 8899 ident: bib0190 article-title: Fragments of ATP synthase mediate plant perception of insect attack publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 156 start-page: 932 year: 2011 end-page: 942 ident: bib0180 article-title: GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes publication-title: Plant Physiol. – volume: 4 start-page: 152 year: 2018 end-page: 156 ident: bib0285 article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects publication-title: Nat. Plants – volume: 296 start-page: 1470 year: 2002 end-page: 1472 ident: bib0255 article-title: An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine publication-title: Science – volume: 103 start-page: 11086 year: 2006 end-page: 11091 ident: bib0360 article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 117 start-page: 9621 year: 2020 end-page: 9629 ident: bib0440 article-title: Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 172 year: 2018 end-page: 180 ident: bib0305 article-title: An apoplastic peptide activates salicylic acid signalling in maize publication-title: Nat. Plants – volume: 24 start-page: 3406 year: 2012 end-page: 3419 ident: bib0365 article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity publication-title: Plant Cell – volume: 16 start-page: 3496 year: 2004 end-page: 3507 ident: bib0110 article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants publication-title: Plant Cell – volume: 110 start-page: 5707 year: 2013 end-page: 5712 ident: bib0170 article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 779 year: 2017 end-page: 791 ident: bib0040 article-title: Sensing danger: key to activating plant immunity publication-title: Trends Plant Sci. – volume: 30 start-page: 1543 year: 2018 end-page: 1561 ident: bib0555 article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis publication-title: Plant Cell – volume: 51 start-page: 245 year: 2013 end-page: 266 ident: bib0050 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu. Rev. Phytopathol. – volume: 5 year: 2016 ident: bib0410 article-title: Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission publication-title: Elife – volume: 110 start-page: 9166 year: 2013 end-page: 9170 ident: bib0435 article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 66 start-page: 5161 year: 2015 end-page: 5169 ident: bib0250 article-title: Phytosulfokine peptide signalling publication-title: J. Exp. Bot. – volume: 116 start-page: 8525 year: 2019 end-page: 8534 ident: bib0120 article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 110 year: 2015 end-page: 120 ident: bib0455 article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1 publication-title: Cell Res. – volume: 10 start-page: 619 year: 2017 end-page: 633 ident: bib0570 article-title: OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice publication-title: Mol. Plant – volume: 33 start-page: 62 year: 2014 end-page: 75 ident: bib0155 article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity publication-title: EMBO J. – volume: 64 start-page: 5309 year: 2013 end-page: 5321 ident: bib0130 article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses publication-title: J. Exp. Bot. – volume: 164 start-page: 352 year: 2014 end-page: 364 ident: bib0350 article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 publication-title: Plant Physiol. – volume: 5 start-page: 415 year: 2002 end-page: 424 ident: bib0550 article-title: Complexity, cross talk and integration of plant MAP kinase signalling publication-title: Curr. Opin. Plant Biol. – volume: 63 start-page: 791 year: 2010 end-page: 800 ident: bib0345 article-title: BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1 publication-title: Plant J. – volume: 64 start-page: 204 year: 2010 end-page: 214 ident: bib0425 article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice publication-title: Plant J. – volume: 19 start-page: 664 year: 2014 end-page: 671 ident: bib0225 article-title: Understanding the RALF family: a tale of many species publication-title: Trends Plant Sci. – volume: 13 start-page: 509 year: 2010 end-page: 514 ident: bib0400 article-title: Multi-tasking of somatic embryogenesis receptor-like protein kinases publication-title: Curr. Opin. Plant Biol. – year: 2021 ident: bib0215 article-title: Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor publication-title: bioRxiv – volume: 278 start-page: 30044 year: 2003 end-page: 30050 ident: bib0290 article-title: Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene publication-title: J. Biol. Chem. – volume: 25 start-page: 2361 year: 2015 end-page: 2372 ident: bib0405 article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning publication-title: Curr. Biol. – volume: 111 start-page: E404 year: 2014 end-page: 413 ident: bib0430 article-title: Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 342 start-page: 624 year: 2013 end-page: 628 ident: bib0450 article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex publication-title: Science – volume: 5 start-page: 178 year: 2014 ident: bib0065 article-title: The role of the cell wall in plant immunity publication-title: Front. Plant Sci. – volume: 69 start-page: 267 year: 2018 end-page: 299 ident: bib0465 article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling publication-title: Annu. Rev. Plant Biol. – volume: 104 start-page: 1582 year: 2020 end-page: 1602 ident: bib0175 article-title: Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance publication-title: Plant J. – volume: 104 start-page: 10732 year: 2007 end-page: 10736 ident: bib0125 article-title: Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 47 year: 2014 end-page: 54 ident: bib0015 article-title: Immune receptor complexes at the plant cell surface publication-title: Curr. Opin. Plant Biol. – volume: 1 start-page: 15140 year: 2015 ident: bib0355 article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity publication-title: Nat. Plants – volume: 13 start-page: 347 year: 2013 end-page: 357 ident: bib0500 article-title: A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity publication-title: Cell Host Microbe – volume: 177 start-page: 1679 year: 2018 end-page: 1690 ident: bib0485 article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling publication-title: Plant Physiol. – volume: 103 start-page: 10104 year: 2006 end-page: 10109 ident: bib0140 article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 363 start-page: eaar7486 year: 2019 ident: bib0135 article-title: Damage on plants activates Ca publication-title: Science – volume: 335 start-page: 859 year: 2012 end-page: 864 ident: bib0090 article-title: Structural basis of TLR5-flagellin recognition and signaling publication-title: Science – volume: 229 start-page: 3467 year: 2021 end-page: 3480 ident: bib0300 article-title: PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector publication-title: New Phytol. – volume: 11 start-page: 539 year: 2010 end-page: 548 ident: bib0005 article-title: Plant immunity: towards an integrated view of plant-pathogen interactions publication-title: Nat. Rev. Genet. – volume: 79 start-page: 56 year: 2014 end-page: 66 ident: bib0510 article-title: Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27 publication-title: Plant J. – volume: 592 start-page: 105 year: 2021 end-page: 109 ident: bib0375 article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity publication-title: Nature – volume: 27 start-page: 739 year: 2008 end-page: 748 ident: bib0475 article-title: Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI) publication-title: Plant Cell Rep. – volume: 104 start-page: 19613 year: 2007 end-page: 19618 ident: bib0315 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 107 start-page: 9452 year: 2010 end-page: 9457 ident: bib0330 article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 705 year: 2021 ident: bib0210 article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2 publication-title: Nat. Commun. – volume: 355 start-page: 287 year: 2017 end-page: 289 ident: bib0230 article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling publication-title: Science – volume: 93 start-page: 7623 year: 1996 end-page: 7627 ident: bib0245 article-title: Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 58 start-page: 993 year: 2017 end-page: 1002 ident: bib0055 article-title: Conservation of chitin-induced MAPK signaling pathways in rice and arabidopsis publication-title: Plant Cell Physiol. – volume: 7 year: 2011 ident: bib0080 article-title: The plant pathogen Pseudomonas syringae pv. Tomato is genetically monomorphic and under strong selection to evade tomato immunity publication-title: PLoS Pathog. – volume: 125 start-page: 749 year: 2006 end-page: 760 ident: bib0115 article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation publication-title: Cell – volume: 22 start-page: 508 year: 2010 end-page: 522 ident: bib0150 article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis publication-title: Plant Cell – volume: 26 start-page: 4135 year: 2014 end-page: 4148 ident: bib0295 article-title: Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato publication-title: Plant Cell – volume: 35 start-page: 46 year: 2016 end-page: 61 ident: bib0160 article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1 publication-title: EMBO J. – volume: 36 start-page: 55 year: 1998 end-page: 62 ident: bib0275 article-title: Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides publication-title: Plant Mol. Biol. – volume: 54 start-page: 43 year: 2014 end-page: 55 ident: bib0045 article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity publication-title: Mol. Cell – volume: 181 start-page: 978 year: 2020 end-page: 989 ident: bib0035 article-title: Plant immunity: danger perception and signaling publication-title: Cell – volume: 16 start-page: 426 year: 2015 end-page: 433 ident: bib0445 article-title: A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana publication-title: Nat. Immunol. – volume: 107 start-page: 496 year: 2010 end-page: 501 ident: bib0490 article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 176 start-page: 2991 year: 2018 end-page: 3002 ident: bib0565 article-title: BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis publication-title: Plant Physiol. – volume: 285 start-page: 28902 year: 2010 end-page: 28911 ident: bib0320 article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation publication-title: J. Biol. Chem. – volume: 29 start-page: 820 year: 2019 end-page: 831 ident: bib0540 article-title: A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice publication-title: Cell Res. – volume: 285 start-page: 13471 year: 2010 end-page: 13479 ident: bib0145 article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2 publication-title: J. Biol. Chem. – volume: 29 start-page: 620 year: 2021 end-page: 634 ident: bib0100 article-title: Signatures of antagonistic pleiotropy in a bacterial flagellin epitope publication-title: Cell Host Microbe – volume: 16 start-page: 1220 year: 2004 end-page: 1234 ident: bib0470 article-title: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice publication-title: Plant Cell – volume: 16 start-page: 537 year: 2016 end-page: 552 ident: bib0020 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. – volume: 108 start-page: 19824 year: 2011 end-page: 19829 ident: bib0370 article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 343 start-page: 290 year: 2014 end-page: 294 ident: bib0335 article-title: Identification of a plant receptor for extracellular ATP publication-title: Science – volume: 23 start-page: 2440 year: 2011 end-page: 2455 ident: bib0395 article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell – volume: 588 start-page: 569 year: 2020 end-page: 573 ident: bib0545 article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity publication-title: Nature – volume: 107 start-page: 14921 year: 2010 end-page: 14925 ident: bib0310 article-title: A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 218 start-page: 1167 year: 2018 end-page: 1178 ident: bib0280 article-title: Phytaspase-mediated precursor processing and maturation of the wound hormone systemin publication-title: New Phytol. – volume: 117 start-page: 31510 year: 2020 end-page: 31518 ident: bib0195 article-title: A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 364 start-page: eaav0748 year: 2019 ident: bib0070 article-title: Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides publication-title: Science – volume: 25 start-page: 1143 year: 2013 end-page: 1157 ident: bib0515 article-title: BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis publication-title: Plant Cell – volume: 1 start-page: 732 year: 2008 end-page: 750 ident: bib0480 article-title: The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress publication-title: Mol. Plant – volume: 2 start-page: 16128 year: 2016 ident: bib0085 article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system publication-title: Nat. Plants – start-page: 104 year: 2014 end-page: 111 ident: bib0415 article-title: Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases publication-title: Curr. Opin. Plant Biol. – volume: 29 start-page: 635 year: 2021 end-page: 649 ident: bib0105 article-title: A complex immune response to flagellin epitope variation in commensal communities publication-title: Cell Host Microbe – volume: 10 year: 2014 ident: bib0200 article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7 publication-title: PLoS Pathog. – volume: 14 start-page: 374 year: 2014 ident: bib0530 article-title: Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1 publication-title: BMC Plant Biol. – volume: 285 start-page: 9444 year: 2010 end-page: 9451 ident: bib0390 article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 publication-title: J. Biol. Chem. – volume: 341 start-page: 746 year: 2013 end-page: 751 ident: bib0010 article-title: Pivoting the plant immune system from dissection to deployment publication-title: Science – volume: 364 start-page: 178 year: 2019 end-page: 181 ident: bib0340 article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants publication-title: Science – volume: 104 start-page: 19613 year: 2007 ident: 10.1016/j.peptides.2021.170611_bib0315 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705147104 – volume: 80 start-page: 1072 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0505 article-title: OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity publication-title: Plant J. doi: 10.1111/tpj.12710 – volume: 104 start-page: 10732 year: 2007 ident: 10.1016/j.peptides.2021.170611_bib0125 article-title: Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0703343104 – volume: 12 start-page: 705 year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0210 article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20932-y – volume: 104 start-page: 1582 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0175 article-title: Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance publication-title: Plant J. doi: 10.1111/tpj.15022 – volume: 107 start-page: 14921 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0310 article-title: A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1007568107 – volume: 355 start-page: 287 year: 2017 ident: 10.1016/j.peptides.2021.170611_bib0230 article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling publication-title: Science doi: 10.1126/science.aal2541 – volume: 4 start-page: 152 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0285 article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects publication-title: Nat. Plants doi: 10.1038/s41477-018-0106-0 – volume: 11 start-page: 539 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0005 article-title: Plant immunity: towards an integrated view of plant-pathogen interactions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2812 – volume: 29 start-page: 820 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0540 article-title: A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice publication-title: Cell Res. doi: 10.1038/s41422-019-0219-7 – volume: 22 start-page: 779 year: 2017 ident: 10.1016/j.peptides.2021.170611_bib0040 article-title: Sensing danger: key to activating plant immunity publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.07.005 – volume: 111 start-page: E404 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0430 article-title: Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1312099111 – volume: 36 start-page: 55 year: 1998 ident: 10.1016/j.peptides.2021.170611_bib0275 article-title: Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides publication-title: Plant Mol. Biol. doi: 10.1023/A:1005986004615 – volume: 64 start-page: 5309 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0130 article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert330 – volume: 107 start-page: 9452 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0330 article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1000675107 – volume: 70 start-page: 1349 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0205 article-title: The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery454 – year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0215 article-title: Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor publication-title: bioRxiv – volume: 11 start-page: 1838 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0525 article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD publication-title: Nat. Commun. doi: 10.1038/s41467-020-15601-5 – volume: 335 start-page: 859 year: 2012 ident: 10.1016/j.peptides.2021.170611_bib0090 article-title: Structural basis of TLR5-flagellin recognition and signaling publication-title: Science doi: 10.1126/science.1215584 – volume: 5 year: 2016 ident: 10.1016/j.peptides.2021.170611_bib0410 article-title: Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission publication-title: Elife doi: 10.7554/eLife.15075 – volume: 66 start-page: 5315 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0185 article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv236 – volume: 572 start-page: 131 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0535 article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity publication-title: Nature doi: 10.1038/s41586-019-1413-y – volume: 110 start-page: 10010 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0420 article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1220015110 – volume: 324 start-page: 746 year: 2009 ident: 10.1016/j.peptides.2021.170611_bib0060 article-title: Plant-microbe interactions: chemical diversity in plant defense publication-title: Science doi: 10.1126/science.1171661 – volume: 181 start-page: 978 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0035 article-title: Plant immunity: danger perception and signaling publication-title: Cell doi: 10.1016/j.cell.2020.04.028 – volume: 5 start-page: 1003 year: 2000 ident: 10.1016/j.peptides.2021.170611_bib0075 article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80265-8 – volume: 13 year: 2017 ident: 10.1016/j.peptides.2021.170611_bib0220 article-title: The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006832 – volume: 25 start-page: 2361 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0405 article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.07.068 – volume: 29 start-page: 620 year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0100 article-title: Signatures of antagonistic pleiotropy in a bacterial flagellin epitope publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.008 – volume: 10 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0200 article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004331 – volume: 64 start-page: 204 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0425 article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04324.x – volume: 164 start-page: 352 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0350 article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 publication-title: Plant Physiol. doi: 10.1104/pp.113.230698 – volume: 16 start-page: 1220 year: 2004 ident: 10.1016/j.peptides.2021.170611_bib0470 article-title: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice publication-title: Plant Cell doi: 10.1105/tpc.020834 – volume: 296 start-page: 1470 year: 2002 ident: 10.1016/j.peptides.2021.170611_bib0255 article-title: An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine publication-title: Science doi: 10.1126/science.1069607 – volume: 364 start-page: 178 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0340 article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants publication-title: Science doi: 10.1126/science.aau1279 – volume: 5 start-page: 178 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0065 article-title: The role of the cell wall in plant immunity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00178 – volume: 23 start-page: 2440 year: 2011 ident: 10.1016/j.peptides.2021.170611_bib0395 article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell doi: 10.1105/tpc.111.084301 – volume: 364 start-page: eaav0748 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0070 article-title: Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides publication-title: Science doi: 10.1126/science.aav0748 – volume: 448 start-page: 497 year: 2007 ident: 10.1016/j.peptides.2021.170611_bib0380 article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature doi: 10.1038/nature05999 – volume: 285 start-page: 28902 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0320 article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.116657 – volume: 66 start-page: 5161 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0250 article-title: Phytosulfokine peptide signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv071 – volume: 56 start-page: 219 year: 2008 ident: 10.1016/j.peptides.2021.170611_bib0235 article-title: Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03598.x – volume: 229 start-page: 3467 year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0300 article-title: PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector publication-title: New Phytol. doi: 10.1111/nph.17128 – volume: 3 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0325 article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1 publication-title: Elife doi: 10.7554/eLife.03766 – volume: 19 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0560 article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling publication-title: EMBO Rep. doi: 10.15252/embr.201745324 – volume: 25 start-page: 1143 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0515 article-title: BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.107904 – volume: 16 start-page: 426 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0445 article-title: A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana publication-title: Nat. Immunol. doi: 10.1038/ni.3124 – volume: 29 start-page: 635 year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0105 article-title: A complex immune response to flagellin epitope variation in commensal communities publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.006 – volume: 63 start-page: 791 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0345 article-title: BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04282.x – volume: 588 start-page: 569 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0545 article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity publication-title: Nature doi: 10.1038/s41586-020-2702-1 – volume: 108 start-page: 19824 year: 2011 ident: 10.1016/j.peptides.2021.170611_bib0370 article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1112862108 – volume: 104 start-page: 12217 year: 2007 ident: 10.1016/j.peptides.2021.170611_bib0385 article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705306104 – volume: 592 start-page: 105 year: 2021 ident: 10.1016/j.peptides.2021.170611_bib0375 article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity publication-title: Nature doi: 10.1038/s41586-021-03316-6 – volume: 342 start-page: 624 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0450 article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex publication-title: Science doi: 10.1126/science.1243825 – volume: 116 start-page: 8525 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0120 article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1818275116 – volume: 525 start-page: 265 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0460 article-title: Allosteric receptor activation by the plant peptide hormone phytosulfokine publication-title: Nature doi: 10.1038/nature14858 – volume: 5 start-page: 309 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0095 article-title: Emerging concepts about NAIP/NLRC4 inflammasomes publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00309 – volume: 58 start-page: 993 year: 2017 ident: 10.1016/j.peptides.2021.170611_bib0055 article-title: Conservation of chitin-induced MAPK signaling pathways in rice and arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx042 – volume: 103 start-page: 10104 year: 2006 ident: 10.1016/j.peptides.2021.170611_bib0140 article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0603729103 – volume: 93 start-page: 7623 year: 1996 ident: 10.1016/j.peptides.2021.170611_bib0245 article-title: Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.15.7623 – volume: 13 start-page: 347 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0500 article-title: A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.02.007 – volume: 73 start-page: 469 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0260 article-title: The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner publication-title: Plant J. doi: 10.1111/tpj.12050 – volume: 93 start-page: 592 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0025 article-title: Pattern recognition receptors and signaling in plant-microbe interactions publication-title: Plant J. doi: 10.1111/tpj.13808 – volume: 285 start-page: 13471 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0145 article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.097394 – volume: 69 start-page: 267 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0465 article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040540 – volume: 28 start-page: 429 year: 2007 ident: 10.1016/j.peptides.2021.170611_bib0030 article-title: Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox publication-title: Trends Immunol. doi: 10.1016/j.it.2007.08.004 – volume: 117 start-page: 9621 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0440 article-title: Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1907799117 – volume: 4 start-page: 172 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0305 article-title: An apoplastic peptide activates salicylic acid signalling in maize publication-title: Nat. Plants doi: 10.1038/s41477-018-0116-y – volume: 278 start-page: 30044 year: 2003 ident: 10.1016/j.peptides.2021.170611_bib0290 article-title: Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304159200 – volume: 15 start-page: 329 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0520 article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.02.009 – volume: 156 start-page: 932 year: 2011 ident: 10.1016/j.peptides.2021.170611_bib0180 article-title: GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes publication-title: Plant Physiol. doi: 10.1104/pp.111.173096 – volume: 103 start-page: 8894 issue: 23 year: 2006 ident: 10.1016/j.peptides.2021.170611_bib0190 article-title: Fragments of ATP synthase mediate plant perception of insect attack publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602328103 – volume: 24 start-page: 3406 year: 2012 ident: 10.1016/j.peptides.2021.170611_bib0365 article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity publication-title: Plant Cell doi: 10.1105/tpc.112.102475 – volume: 27 start-page: 739 year: 2008 ident: 10.1016/j.peptides.2021.170611_bib0475 article-title: Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI) publication-title: Plant Cell Rep. doi: 10.1007/s00299-007-0494-5 – volume: 33 start-page: 62 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0155 article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity publication-title: EMBO J. doi: 10.1002/embj.201284303 – volume: 363 start-page: eaar7486 year: 2019 ident: 10.1016/j.peptides.2021.170611_bib0135 article-title: Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides publication-title: Science doi: 10.1126/science.aar7486 – volume: 35 start-page: 46 year: 2016 ident: 10.1016/j.peptides.2021.170611_bib0160 article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1 publication-title: EMBO J. doi: 10.15252/embj.201591807 – volume: 25 start-page: 110 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0455 article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1 publication-title: Cell Res. doi: 10.1038/cr.2014.161 – volume: 26 start-page: 4135 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0295 article-title: Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato publication-title: Plant Cell doi: 10.1105/tpc.114.131185 – volume: 176 start-page: 2991 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0565 article-title: BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.17.01757 – volume: 54 start-page: 43 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0045 article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.02.021 – volume: 110 start-page: 5707 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0170 article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1214668110 – volume: 71 start-page: 194 year: 2012 ident: 10.1016/j.peptides.2021.170611_bib0265 article-title: The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.04950.x – volume: 2 start-page: 16128 year: 2016 ident: 10.1016/j.peptides.2021.170611_bib0085 article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system publication-title: Nat. Plants doi: 10.1038/nplants.2016.128 – volume: 22 start-page: 508 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0150 article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.068874 – volume: 107 start-page: 496 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0490 article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0909705107 – volume: 1 start-page: 15140 year: 2015 ident: 10.1016/j.peptides.2021.170611_bib0355 article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity publication-title: Nat. Plants doi: 10.1038/nplants.2015.140 – volume: 125 start-page: 749 year: 2006 ident: 10.1016/j.peptides.2021.170611_bib0115 article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation publication-title: Cell doi: 10.1016/j.cell.2006.03.037 – volume: 7 year: 2011 ident: 10.1016/j.peptides.2021.170611_bib0080 article-title: The plant pathogen Pseudomonas syringae pv. Tomato is genetically monomorphic and under strong selection to evade tomato immunity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002130 – volume: 411 start-page: 817 year: 2001 ident: 10.1016/j.peptides.2021.170611_bib0270 article-title: Production of multiple plant hormones from a single polyprotein precursor publication-title: Nature doi: 10.1038/35081107 – volume: 218 start-page: 1167 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0280 article-title: Phytaspase-mediated precursor processing and maturation of the wound hormone systemin publication-title: New Phytol. doi: 10.1111/nph.14568 – volume: 343 start-page: 290 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0335 article-title: Identification of a plant receptor for extracellular ATP publication-title: Science doi: 10.1126/science.343.6168.290 – volume: 20 start-page: 47 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0015 article-title: Immune receptor complexes at the plant cell surface publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.04.007 – volume: 13 start-page: 509 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0400 article-title: Multi-tasking of somatic embryogenesis receptor-like protein kinases publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.09.004 – volume: 14 start-page: 374 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0530 article-title: Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1 publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0374-4 – volume: 155 start-page: 1325 year: 2011 ident: 10.1016/j.peptides.2021.170611_bib0165 article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance publication-title: Plant Physiol. doi: 10.1104/pp.110.166710 – volume: 51 start-page: 245 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0050 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102314 – volume: 285 start-page: 9444 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0390 article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.096842 – volume: 341 start-page: 746 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0010 article-title: Pivoting the plant immune system from dissection to deployment publication-title: Science doi: 10.1126/science.1236011 – volume: 7 start-page: 290 year: 2010 ident: 10.1016/j.peptides.2021.170611_bib0495 article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.03.007 – volume: 79 start-page: 56 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0510 article-title: Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27 publication-title: Plant J. doi: 10.1111/tpj.12535 – volume: 16 start-page: 3496 year: 2004 ident: 10.1016/j.peptides.2021.170611_bib0110 article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants publication-title: Plant Cell doi: 10.1105/tpc.104.026765 – volume: 5 start-page: 415 year: 2002 ident: 10.1016/j.peptides.2021.170611_bib0550 article-title: Complexity, cross talk and integration of plant MAP kinase signalling publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(02)00285-6 – volume: 1 start-page: 732 year: 2008 ident: 10.1016/j.peptides.2021.170611_bib0480 article-title: The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress publication-title: Mol. Plant doi: 10.1093/mp/ssn047 – volume: 177 start-page: 1679 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0485 article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling publication-title: Plant Physiol. – volume: 16 start-page: 537 year: 2016 ident: 10.1016/j.peptides.2021.170611_bib0020 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.77 – volume: 19 start-page: 664 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0225 article-title: Understanding the RALF family: a tale of many species publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.06.005 – volume: 110 start-page: 9166 year: 2013 ident: 10.1016/j.peptides.2021.170611_bib0435 article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1203458110 – volume: 10 start-page: 619 year: 2017 ident: 10.1016/j.peptides.2021.170611_bib0570 article-title: OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2017.01.006 – volume: 117 start-page: 31510 year: 2020 ident: 10.1016/j.peptides.2021.170611_bib0195 article-title: A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2018415117 – start-page: 104 year: 2014 ident: 10.1016/j.peptides.2021.170611_bib0415 article-title: Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.07.007 – volume: 103 start-page: 11086 year: 2006 ident: 10.1016/j.peptides.2021.170611_bib0360 article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0508882103 – volume: 1 start-page: 16043 year: 2016 ident: 10.1016/j.peptides.2021.170611_bib0240 article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.43 – volume: 30 start-page: 1543 year: 2018 ident: 10.1016/j.peptides.2021.170611_bib0555 article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.17.00981 |
| SSID | ssj0004498 |
| Score | 2.4229863 |
| Snippet | •Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by... Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 170611 |
| SubjectTerms | calcium Cell Membrane - metabolism DAMP Host-Pathogen Interactions mitogen-activated protein kinase Mitogen-Activated Protein Kinases - metabolism PAMP Pathogen-Associated Molecular Pattern Molecules - immunology Pathogen-Associated Molecular Pattern Molecules - metabolism Pattern-recognition receptor Pattern-triggered immunity peptides Peptides - immunology Peptides - physiology Phytocytokine Plant Immunity - physiology Plant Proteins - immunology Plant Proteins - metabolism plasma membrane Reactive Oxygen Species Receptors, Pattern Recognition - chemistry Receptors, Pattern Recognition - immunology Receptors, Pattern Recognition - metabolism Signal Transduction |
| Title | Pathogen- and plant-derived peptides trigger plant immunity |
| URI | https://dx.doi.org/10.1016/j.peptides.2021.170611 https://www.ncbi.nlm.nih.gov/pubmed/34303752 https://www.proquest.com/docview/2555336507 https://www.proquest.com/docview/2636462836 |
| Volume | 144 |
| WOSCitedRecordID | wos000687890400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5169 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004498 issn: 0196-9781 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFAkuCFoe4VEZCfWCHJys9yVOUZUKUBVycCVzstbrNUrU2mnjtOXfM-v1OolIaTlwsex9eNcz49nZx8yH0AcuiJQ4Yz4b5LkfSkJ9TnJ4FJoLKkCsVVaDTbDxmMexmDRom4saToAVBb-5EfP_ympIA2Yb19l_YHf7UkiAe2A6XIHtcL0X4ydg05WQ69sYAGdAOj-Dhq_AtJybMyyZieoAk3Lj71tnf5zWTiLVxg7vxBXdAtfj1hGCtXWEH_Jc_jTIKrXqKGfTVpXLa7mQFh07Wiyr8ny5vtQw6LeH1px25Az7ZmPNDh5b0pxKDcM1pWgi9FiN-oe-tksHs577_J5ptreqsBkge_w9OT49OUmiURwdzi98gx1m9tgbIJUdtDtgRPAO2h1-HcXfVv6xYY2J3HZ1zVN8e9O3GSm3TUJqYyR6ip40swhvaLn_DD3QxR7aHxYSqPvLO_Tqc731hskeenTkMP320edWODwQDm9DODzXRa8RDpvtOeF4jk6PR9HRF7-Bz_AVjH6V34ehSzIGWjbQWGtOZZ_nlGowiAlXBP5FHkiMMc_BTFQB5VIoME6UoEoDpTL8AnWKstCvkBekPEs5UFFTGhKGRZ6mAgw_lpJcZZh3EXH0SlQTW95AnJwl7hDhLHEfkRg6J5bOXfSprTe30VXurCEcO5LGRrS2XwIidWfd945_CdDd7IzJQpdLKEQITHtgssL-UoZiahy5Me2il5b5bZ9xiA2W9OD1PVp4gx6v_q23qFNdLvU79FBdVdPF5QHaYTE_aAT4N-0JpQY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogen-+and+plant-derived+peptides+trigger+plant+immunity&rft.jtitle=Peptides+%28New+York%2C+N.Y.+%3A+1980%29&rft.au=Yamaguchi%2C+Koji&rft.au=Kawasaki%2C+Tsutomu&rft.date=2021-10-01&rft.issn=1873-5169&rft.eissn=1873-5169&rft.volume=144&rft.spage=170611&rft_id=info:doi/10.1016%2Fj.peptides.2021.170611&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-9781&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-9781&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-9781&client=summon |