Pathogen- and plant-derived peptides trigger plant immunity

•Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune sign...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Peptides (New York, N.Y. : 1980) Ročník 144; s. 170611
Hlavní autoři: Yamaguchi, Koji, Kawasaki, Tsutomu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.10.2021
Témata:
ISSN:0196-9781, 1873-5169, 1873-5169
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune signaling cascades. Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
AbstractList Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca²⁺ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
•Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by PRRs.•Perception of peptides by PRRs involves dynamic association with co-receptors.•Peptide perception by PRRs rapidly activates immune signaling cascades. Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
ArticleNumber 170611
Author Kawasaki, Tsutomu
Yamaguchi, Koji
Author_xml – sequence: 1
  givenname: Koji
  surname: Yamaguchi
  fullname: Yamaguchi, Koji
  organization: Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
– sequence: 2
  givenname: Tsutomu
  orcidid: 0000-0003-2579-2000
  surname: Kawasaki
  fullname: Kawasaki, Tsutomu
  email: t-kawasaki@nara.kindai.ac.jp
  organization: Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34303752$$D View this record in MEDLINE/PubMed
BookMark eNqFkTlPAzEQhS0URA74C1FKmg32en0JClDEJUWCAmrL2JPgKHtgO5Hy79loEwqaVKPRfG_Gfm-IelVdAUJjgqcEE36zmjbQJO8gTnOckykRmBNyhgZECpoxwlUPDTBRPFNCkj4axrjCGBeFkheoTwuKqWD5AN2-m_RdL6HKJqZyk2ZtqpQ5CH4LbXc4MUnBL5cQuvHEl-Wm8ml3ic4XZh3h6lBH6PPp8WP2ks3fnl9nD_PMFlykjBjnjBCYUQwUQHJD5IJzULli0jKQSmJDKZULLKTFXBplc6Ws4hbazzg6Qtfd3ibUPxuISZc-Wli3j4F6E3XOKS94Lik_jTLGKOUMixYdH9DNVwlON8GXJuz00ZsW4B1gQx1jgMUfQrDeh6BX-uiQ3oeguxBa4d0_ofXJJF9XKRi_Pi2_7-TQerr1EHS0HioLzgewSbvan1rxC8qNpXg
CitedBy_id crossref_primary_10_1021_acs_jafc_5c00286
crossref_primary_10_1016_j_tifs_2021_08_037
crossref_primary_10_1038_s41477_025_02086_7
crossref_primary_10_1094_PHYTO_12_24_0408_R
crossref_primary_10_1093_jxb_eraf180
crossref_primary_10_1007_s11627_025_10518_4
crossref_primary_10_1134_S1022795424700881
crossref_primary_10_1146_annurev_phyto_021621_120943
crossref_primary_10_1111_jipb_13566
crossref_primary_10_3390_horticulturae10080857
crossref_primary_10_3390_plants14152452
crossref_primary_10_1039_D5NR00953G
crossref_primary_10_3389_fpls_2022_852808
crossref_primary_10_1016_j_cell_2025_07_044
Cites_doi 10.1073/pnas.0705147104
10.1111/tpj.12710
10.1073/pnas.0703343104
10.1038/s41467-021-20932-y
10.1111/tpj.15022
10.1073/pnas.1007568107
10.1126/science.aal2541
10.1038/s41477-018-0106-0
10.1038/nrg2812
10.1038/s41422-019-0219-7
10.1016/j.tplants.2017.07.005
10.1073/pnas.1312099111
10.1023/A:1005986004615
10.1093/jxb/ert330
10.1073/pnas.1000675107
10.1093/jxb/ery454
10.1038/s41467-020-15601-5
10.1126/science.1215584
10.7554/eLife.15075
10.1093/jxb/erv236
10.1038/s41586-019-1413-y
10.1073/pnas.1220015110
10.1126/science.1171661
10.1016/j.cell.2020.04.028
10.1016/S1097-2765(00)80265-8
10.1371/journal.pgen.1006832
10.1016/j.cub.2015.07.068
10.1016/j.chom.2021.02.008
10.1371/journal.ppat.1004331
10.1111/j.1365-313X.2010.04324.x
10.1104/pp.113.230698
10.1105/tpc.020834
10.1126/science.1069607
10.1126/science.aau1279
10.3389/fpls.2014.00178
10.1105/tpc.111.084301
10.1126/science.aav0748
10.1038/nature05999
10.1074/jbc.M110.116657
10.1093/jxb/erv071
10.1111/j.1365-313X.2008.03598.x
10.1111/nph.17128
10.7554/eLife.03766
10.15252/embr.201745324
10.1105/tpc.112.107904
10.1038/ni.3124
10.1016/j.chom.2021.02.006
10.1111/j.1365-313X.2010.04282.x
10.1038/s41586-020-2702-1
10.1073/pnas.1112862108
10.1073/pnas.0705306104
10.1038/s41586-021-03316-6
10.1126/science.1243825
10.1073/pnas.1818275116
10.1038/nature14858
10.3389/fimmu.2014.00309
10.1093/pcp/pcx042
10.1073/pnas.0603729103
10.1073/pnas.93.15.7623
10.1016/j.chom.2013.02.007
10.1111/tpj.12050
10.1111/tpj.13808
10.1074/jbc.M109.097394
10.1146/annurev-arplant-042817-040540
10.1016/j.it.2007.08.004
10.1073/pnas.1907799117
10.1038/s41477-018-0116-y
10.1074/jbc.M304159200
10.1016/j.chom.2014.02.009
10.1104/pp.111.173096
10.1073/pnas.0602328103
10.1105/tpc.112.102475
10.1007/s00299-007-0494-5
10.1002/embj.201284303
10.1126/science.aar7486
10.15252/embj.201591807
10.1038/cr.2014.161
10.1105/tpc.114.131185
10.1104/pp.17.01757
10.1016/j.molcel.2014.02.021
10.1073/pnas.1214668110
10.1111/j.1365-313X.2012.04950.x
10.1038/nplants.2016.128
10.1105/tpc.109.068874
10.1073/pnas.0909705107
10.1038/nplants.2015.140
10.1016/j.cell.2006.03.037
10.1371/journal.ppat.1002130
10.1038/35081107
10.1111/nph.14568
10.1126/science.343.6168.290
10.1016/j.pbi.2014.04.007
10.1016/j.pbi.2010.09.004
10.1186/s12870-014-0374-4
10.1104/pp.110.166710
10.1146/annurev-phyto-082712-102314
10.1074/jbc.M109.096842
10.1126/science.1236011
10.1016/j.chom.2010.03.007
10.1111/tpj.12535
10.1105/tpc.104.026765
10.1016/S1369-5266(02)00285-6
10.1093/mp/ssn047
10.1038/nri.2016.77
10.1016/j.tplants.2014.06.005
10.1073/pnas.1203458110
10.1016/j.molp.2017.01.006
10.1073/pnas.2018415117
10.1016/j.pbi.2014.07.007
10.1073/pnas.0508882103
10.1038/nmicrobiol.2016.43
10.1105/tpc.17.00981
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.peptides.2021.170611
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1873-5169
ExternalDocumentID 34303752
10_1016_j_peptides_2021_170611
S0196978121001194
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
3O-
4.4
457
4G.
53G
5VS
6DK
6DL
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX3
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSU
SSZ
T5K
TEORI
WUQ
X7M
XJT
ZGI
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-1adda770530e3ee86a18f66e92958c5e8980a3338f078c068a9c299c96ce873d3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687890400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-9781
1873-5169
IngestDate Sat Sep 27 22:36:36 EDT 2025
Wed Oct 01 17:05:30 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Sat Nov 29 07:22:31 EST 2025
Tue Nov 18 22:35:24 EST 2025
Fri Feb 23 02:43:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PAMP
Phytocytokine
Pattern-triggered immunity
Pattern-recognition receptor
DAMP
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-1adda770530e3ee86a18f66e92958c5e8980a3338f078c068a9c299c96ce873d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2579-2000
PMID 34303752
PQID 2555336507
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636462836
proquest_miscellaneous_2555336507
pubmed_primary_34303752
crossref_primary_10_1016_j_peptides_2021_170611
crossref_citationtrail_10_1016_j_peptides_2021_170611
elsevier_sciencedirect_doi_10_1016_j_peptides_2021_170611
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Peptides (New York, N.Y. : 1980)
PublicationTitleAlternate Peptides
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lee, Lal, Lin, Ma, Liu, Castro, Toruno, Dinesh-Kumar, Coaker (bib0525) 2020; 11
Malinovsky, Fangel, Willats (bib0065) 2014; 5
Liu, Li, Ao, Qu, Li, Su, Zhang, Liu, Feng, Qi, He, Wang, Wang (bib0365) 2012; 24
Van der Does, Boutrot, Engelsdorf, Rhodes, McKenna, Vernhettes, Koevoets, Tintor, Veerabagu, Miedes, Segonzac, Roux, Breda, Hardtke, Molina, Rep, Testerink, Mouille, Höfte, Hamann, Zipfel (bib0220) 2017; 13
Yan, Zhao, Shi, Li, Wang, Tang (bib0565) 2018; 176
Zipfel, Kunze, Chinchilla, Caniard, Jones, Boller, Felix (bib0115) 2006; 125
Faulkner, Petutschnig, Benitez-Alfonso, Beck, Robatzek, Lipka, Maule (bib0435) 2013; 110
Dodds, Rathjen (bib0005) 2010; 11
Cai, Lewis, Yan, Liu, Clarke, Campanile, Almeida, Studholme, Lindeberg, Schneider, Zaccardelli, Setubal, Morales-Lizcano, Bernal, Coaker, Baker, Bender, Leman, Vinatzer (bib0080) 2011; 7
Yoon, Kurnasov, Natarajan, Hong, Gudkov, Osterman, Wilson (bib0090) 2012; 335
Schulze, Mentzel, Jehle, Mueller, Beeler, Boller, Felix, Chinchilla (bib0390) 2010; 285
Colaianni, Parys, Lee, Conway, Kim, Edelbacher, Mucyn, Madalinski, Law, Jones, Belkhadir, Dangl (bib0105) 2021; 29
Steinbrenner, Munoz-Amatriain, Chaparro, Aguilar-Venegas, Lo, Okuda, Glauser, Dongiovanni, Shi, Hall, Crubaugh, Holton, Zipfel, Abagyan, Turlings, Close, Huffaker, Schmelz (bib0195) 2020; 117
Chinchilla, Zipfel, Robatzek, Kemmerling, Nurnberger, Jones, Felix, Boller (bib0380) 2007; 448
Liang, Zhou (bib0465) 2018; 69
Wang, Einig, Almeida-Trapp, Albert, Fliegmann, Mithöfer, Felix (bib0285) 2018; 4
Li, Li, Yu, Zhou, Liang, Liu, Cai, Gao, Zhang, Wang, Chen, Zhou (bib0520) 2014; 15
Huffaker, Ryan (bib0125) 2007; 104
Kadota, Sklenar, Derbyshire, Stransfeld, Asai, Ntoukakis, Jones, Shirasu, Menke, Jones, Zipfel (bib0045) 2014; 54
Lage, Longo, Branco, da Costa, Buzzo Cde, Bortoluci (bib0095) 2014; 5
Hou, Liu, Huang, Luo, Liu, Wang, Mu, Han, Chai, Shan, He (bib0215) 2021
Tang, Han, Sun, Zhang, Gong, Chai (bib0455) 2015; 25
Jurca, Bottka, Fehér (bib0475) 2008; 27
Igarashi, Tsuda, Katagiri (bib0265) 2012; 71
Brutus, Sicilia, Macone, Cervone, De Lorenzo (bib0330) 2010; 107
Cheval, Samwald, Johnston, de Keijzer, Breakspear, Liu, Bellandi, Kadota, Zipfel, Faulkner (bib0440) 2020; 117
Krol, Mentzel, Chinchilla, Boller, Felix, Kemmerling, Postel, Arents, Jeworutzki, Al-Rasheid, Becker, Hedrich (bib0145) 2010; 285
Sung, Outram, Breen, Wang, Dagvadorj, Winterberg, Kobe, Williams, Solomon (bib0300) 2021; 229
Meng, Zhang (bib0050) 2013; 51
Choi, Tanaka, Cao, Qi, Qiu, Liang, Lee, Stacey (bib0335) 2014; 343
Rhodes, Yang, Moussu, Boutrot, Santiago, Zipfel (bib0210) 2021; 12
Bednarek, Osbourn (bib0060) 2009; 324
Cao, Liang, Tanaka, Nguyen, Jedrzejczak, Joachimiak, Stacey (bib0325) 2014; 3
Rubartelli, Lotze (bib0030) 2007; 28
Beloshistov, Dreizler, Galiullina, Tuzhikov, Serebryakova, Reichardt, Shaw, Taliansky, Pfannstiel, Chichkova, Stintzi, Schaller, Vartapetian (bib0280) 2018; 218
Wang, Li, Han, Zhang, Wang, Lin, Chang, Yang, Chai (bib0460) 2015; 525
Willmann, Lajunen, Erbs, Newman, Kolb, Tsuda, Katagiri, Fliegmann, Bono, Cullimore, Jehle, Götz, Kulik, Molinaro, Lipka, Gust, Nürnberger (bib0370) 2011; 108
Schmelz, Carroll, LeClere, Phipps, Meredith, Chourey, Alborn, Teal (bib0190) 2006; 103
Kaku, Nishizawa, Ishii-Minami, Akimoto-Tomiyama, Dohmae, Takio, Minami, Shibuya (bib0360) 2006; 103
Bi, Zhou, Wang, Li, Rao, Wu, Zhang, Menke, Chen, Zhou (bib0555) 2018; 30
Wang, Wang, Zhang, Zhu, Dai, Yu, He, Xu, Wang (bib0570) 2017; 10
Lori, van Verk, Hander, Schatowitz, Klauser, Flury, Gehring, Boller, Bartels (bib0185) 2015; 66
Li (bib0400) 2010; 13
Yamaguchi, Huffaker, Bryan, Tax, Ryan (bib0150) 2010; 22
Hander, Fernández-Fernández, Kumpf, Willems, Schatowitz, Rombaut, Staes, Nolf, Pottie, Yao, Gonçalves, Pavie, Boller, Gevaert, Van Breusegem, Bartels, Stael (bib0135) 2019; 363
Zhang, Kars, Essenstam, Liebrand, Wagemakers, Elberse, Tagkalaki, Tjoitang, van den Ackerveken, van Kan (bib0350) 2014; 164
Santiago, Brandt, Wildhagen, Hohmann, Hothorn, Butenko, Hothorn (bib0410) 2016; 5
Thor, Jiang, Michard, George, Scherzer, Huang, Dindas, Derbyshire, Leitão, DeFalco, Köster, Hunter, Kimura, Gronnier, Stransfeld, Kadota, Bücherl, Charpentier, Wrzaczek, MacLean, Oldroyd, Menke, Roelfsema, Hedrich, Feijó, Zipfel (bib0545) 2020; 588
Huffaker, Dafoe, Schmelz (bib0165) 2011; 155
Hayafune, Berisio, Marchetti, Silipo, Kayama, Desaki, Arima, Squeglia, Ruggiero, Tokuyasu, Molinaro, Kaku, Shibuya (bib0430) 2014; 111
Constabel, Yip, Ryan (bib0275) 1998; 36
Jonak (bib0550) 2002; 5
Ranf, Eschen-Lippold, Frohlich, Westphal, Scheel, Lee (bib0530) 2014; 14
Kunze, Zipfel, Robatzek, Niehaus, Boller, Felix (bib0110) 2004; 16
Yamada, Yamashita-Yamada, Hirase, Fujiwara, Tsuda, Hiruma, Saijo (bib0160) 2016; 35
Gust, Felix (bib0415) 2014
Matsubayashi, Ogawa, Morita, Sakagami (bib0255) 2002; 296
Poretsky, Dressano, Weckwerth, Ruiz, Char, Shi, Abagyan, Yang, Huffaker (bib0175) 2020; 104
Wang, Liu, Zhang, Ren, Wu, Wang, Xu, Lei, Zhu, Pan, Wang, Zhang, Wang, Tan, Wang, Jin, Luo, Zhou, Zhang, Liu, Wang, Meng, Wang, Chen, Lin, Zhang, Guo, Cheng, Wang, Tian, Liu, Jiang, Wu, Wang, Zhou, Wang, Wang, Wan (bib0540) 2019; 29
Yamaguchi, Barona, Ryan, Pearce (bib0180) 2011; 156
Gully, Pelletier, Guillou, Ferrand, Aligon, Pokotylo, Perrin, Vergne, Fagard, Ruelland, Grappin, Bucher, Renou, Aubourg (bib0205) 2019; 70
Ziemann, van der Linde, Lahrmann, Acar, Kaschani, Colby, Kaiser, Ding, Schmelz, Huffaker, Holton, Zipfel, Doehlemann (bib0305) 2018; 4
Pearce, Yamaguchi, Barona, Ryan (bib0310) 2010; 107
Zhou, Zhang (bib0035) 2020; 181
Yamada, Yamaguchi, Yoshimura, Terauchi, Kawasaki (bib0055) 2017; 58
Srivastava, Liu, Howell (bib0235) 2008; 56
Shimizu, Nakano, Takamizawa, Desaki, Ishii-Minami, Nishizawa, Minami, Okada, Yamane, Kaku, Shibuya (bib0425) 2010; 64
Buscaill, Chandrasekar, Sanguankiattichai, Kourelis, Kaschani, Thomas, Morimoto, Kaiser, Preston, Ichinose, van der Hoorn (bib0070) 2019; 364
Matsubayashi, Sakagami (bib0245) 1996; 93
Tian, Hou, Ren, Wang, Zhao, Dahlbeck, Hu, Zhang, Niu, Li, Staskawicz, Luan (bib0535) 2019; 572
Meng, Chen, Mang, Liu, Yu, Gao, Torii, He, Shan (bib0405) 2015; 25
Luu, Joe, Chen, Parys, Bahar, Pruitt, Chan, Petzold, Long, Adamchak, Stewart, Belkhadir, Ronald (bib0120) 2019; 116
Yamaguchi, Pearce, Ryan (bib0140) 2006; 103
Petutschnig, Jones, Serazetdinova, Lipka, Lipka (bib0320) 2010; 285
Ross, Yamada, Hiruma, Yamashita-Yamada, Lu, Takano, Tsuda, Saijo (bib0155) 2014; 33
Shi, Shen, Qi, Yan, Nie, Chen, Zhao, Katagiri, Tang (bib0515) 2013; 25
Masachis, Segorbe, Turra, Leon-Ruiz, Furst, El Ghalid, Leonard, Lopez-Berges, Richards, Felix, Di Pietro (bib0240) 2016; 1
Zhang, Li, Xiang, Liu, Laluk, Ding, Zou, Gao, Zhang, Chen, Mengiste, Zhang, Zhou (bib0495) 2010; 7
Albert, Bohm, Albert, Feiler, Imkampe, Wallmeroth, Brancato, Raaymakers, Oome, Zhang, Krol, Grefen, Gust, Chai, Hedrich, Van den Ackerveken, Nurnberger (bib0355) 2015; 1
Huffaker, Pearce, Veyrat, Erb, Turlings, Sartor, Shen, Briggs, Vaughan, Alborn, Teal, Schmelz (bib0170) 2013; 110
Rao, Zhou, Miao, Bi, Hu, Wu, Feng, Zhang, Zhou (bib0485) 2018; 177
Bar, Sharfman, Ron, Avni (bib0345) 2010; 63
Stegmann, Monaghan, Smakowska-Luzan, Rovenich, Lehner, Holton, Belkhadir, Zipfel (bib0230) 2017; 355
Saijo, Loo, Yasuda (bib0025) 2018; 93
Bohm, Albert, Fan, Reinhard, Nurnberger (bib0015) 2014; 20
Mosher, Seybold, Rodriguez, Stahl, Davies, Dayaratne, Morillo, Wierzba, Favery, Keller, Tax, Kemmerling (bib0260) 2013; 73
Gust, Pruitt, Nürnberger (bib0040) 2017; 22
Shiu, Karlowski, Pan, Tzeng, Mayer, Li (bib0470) 2004; 16
Heese, Hann, Gimenez-Ibanez, Jones, He, Li, Schroeder, Peck, Rathjen (bib0385) 2007; 104
Sun, Nitta, Zhang, Wu, Tian, Lee, Zhang (bib0560) 2018; 19
Parys, Colaianni, Lee, Hohmann, Edelbacher, Trgovcevic, Blahovska, Lee, Mechtler, Muhari-Portik, Madalinski, Schandry, Rodriguez-Arevalo, Becker, Sonnleitner, Korte, Blasi, Geldner, Hothorn, Jones, Dangl, Belkhadir (bib0100) 2021; 29
Liebrand, van den Berg, Zhang, Smit, Cordewener, America, Sklenar, Jones, Tameling, Robatzek, Thomma, Joosten (bib0420) 2013; 110
Vij, Giri, Dansana, Kapoor, Tyagi (bib0480) 2008; 1
Bartels, Lori, Mbengue, van Verk, Klauser, Hander, Böni, Robatzek, Boller (bib0130) 2013; 64
Yuan, Jiang, Bi, Nomura, Liu, Wang, Cai, Zhou, He, Xin (bib0375) 2021; 592
Sun, Li, Macho, Han, Hu, Zipfel, Zhou, Chai (bib0450) 2013; 342
Sauter (bib0250) 2015; 66
Hind, Strickler, Boyle, Dunham, Bao, O’Doherty, Baccile, Hoki, Viox, Clarke, Vinatzer, Schroeder, Martin (bib0085) 2016; 2
Hou, Wang, Chen, Yang, Wang, Turrà, Di Pietro, Zhang (bib0200) 2014; 10
Kutschera, Dawid, Gisch, Schmid, Raasch, Gerster, Schäffer, Smakowska-Luzan, Belkhadir, Vlot, Chandler, Schellenberger, Schwudke, Ernst, Dorey, Hückelhoven, Hofmann, Ranf (bib0340) 2019; 364
Dangl, Horvath, Staskawicz (bib0010) 2013; 341
Couto, Zipfel (bib0020) 2016; 16
Shinya, Yamaguchi, Desaki, Yamada, Narisawa, Kobayashi, Maeda, Suzuki, Tanimoto, Takeda, Nakashima, Funama, Narusaka, Narusaka, Kaku, Kawasaki, Shibuya (bib0510) 2014; 79
Ranf, Gisch, Schaffer, Illig, Westphal, Knirel, Sanchez-Carballo, Zahringer, Huckelhoven, Lee, Scheel (bib0445) 2015; 16
Roux, Schwessinger, Albrecht, Chinchilla, Jones, Holton, Malinovsky, Tor, de Vries, Zipfel (bib0395) 2011; 23
Ao, Li, Feng, Xiong, Liu, Li, Wang, Wang, Liu, Wang (bib0505) 2014; 80
Miya, Albert, Shinya, Desaki, Ichimura, Shirasu, Narusaka, Kawakami, Kaku, Shibuya (bib0315) 2007; 104
Lu, Wu, Gao, Zhang, Shan, He (bib0490) 2010; 107
Chen, Lee, Cheng, Chang, Huang, Nam, Chen (bib0295) 2014; 26
Murphy, De Smet (bib0225) 2014; 19
Pearce, Moura, Stratmann, Ryan (bib0270) 2001; 411
Pearce, Ryan (bib0290) 2003; 278
Gómez-Gómez, Boller (bib0075) 2000; 5
Yamaguchi, Yamada, Ishikawa, Yoshimura, Hayashi, Uchihashi, Ishihama, Kishi-Kaboshi, Takahashi, Tsuge, Ochiai, Tada, Shimamoto, Yoshioka, Kawasaki (bib0500) 2013; 13
Pearce (10.1016/j.peptides.2021.170611_bib0270) 2001; 411
Kunze (10.1016/j.peptides.2021.170611_bib0110) 2004; 16
Chen (10.1016/j.peptides.2021.170611_bib0295) 2014; 26
Hind (10.1016/j.peptides.2021.170611_bib0085) 2016; 2
Yan (10.1016/j.peptides.2021.170611_bib0565) 2018; 176
Hou (10.1016/j.peptides.2021.170611_bib0200) 2014; 10
Shiu (10.1016/j.peptides.2021.170611_bib0470) 2004; 16
Steinbrenner (10.1016/j.peptides.2021.170611_bib0195) 2020; 117
Huffaker (10.1016/j.peptides.2021.170611_bib0170) 2013; 110
Igarashi (10.1016/j.peptides.2021.170611_bib0265) 2012; 71
Wang (10.1016/j.peptides.2021.170611_bib0460) 2015; 525
Ao (10.1016/j.peptides.2021.170611_bib0505) 2014; 80
Petutschnig (10.1016/j.peptides.2021.170611_bib0320) 2010; 285
Lage (10.1016/j.peptides.2021.170611_bib0095) 2014; 5
Meng (10.1016/j.peptides.2021.170611_bib0405) 2015; 25
Gust (10.1016/j.peptides.2021.170611_bib0040) 2017; 22
Beloshistov (10.1016/j.peptides.2021.170611_bib0280) 2018; 218
Saijo (10.1016/j.peptides.2021.170611_bib0025) 2018; 93
Kutschera (10.1016/j.peptides.2021.170611_bib0340) 2019; 364
Gully (10.1016/j.peptides.2021.170611_bib0205) 2019; 70
Van der Does (10.1016/j.peptides.2021.170611_bib0220) 2017; 13
Wang (10.1016/j.peptides.2021.170611_bib0570) 2017; 10
Yamaguchi (10.1016/j.peptides.2021.170611_bib0180) 2011; 156
Shimizu (10.1016/j.peptides.2021.170611_bib0425) 2010; 64
Parys (10.1016/j.peptides.2021.170611_bib0100) 2021; 29
Srivastava (10.1016/j.peptides.2021.170611_bib0235) 2008; 56
Cai (10.1016/j.peptides.2021.170611_bib0080) 2011; 7
Kadota (10.1016/j.peptides.2021.170611_bib0045) 2014; 54
Couto (10.1016/j.peptides.2021.170611_bib0020) 2016; 16
Huffaker (10.1016/j.peptides.2021.170611_bib0165) 2011; 155
Vij (10.1016/j.peptides.2021.170611_bib0480) 2008; 1
Yamaguchi (10.1016/j.peptides.2021.170611_bib0500) 2013; 13
Tang (10.1016/j.peptides.2021.170611_bib0455) 2015; 25
Sauter (10.1016/j.peptides.2021.170611_bib0250) 2015; 66
Constabel (10.1016/j.peptides.2021.170611_bib0275) 1998; 36
Luu (10.1016/j.peptides.2021.170611_bib0120) 2019; 116
Murphy (10.1016/j.peptides.2021.170611_bib0225) 2014; 19
Dangl (10.1016/j.peptides.2021.170611_bib0010) 2013; 341
Zhang (10.1016/j.peptides.2021.170611_bib0350) 2014; 164
Masachis (10.1016/j.peptides.2021.170611_bib0240) 2016; 1
Choi (10.1016/j.peptides.2021.170611_bib0335) 2014; 343
Yamada (10.1016/j.peptides.2021.170611_bib0055) 2017; 58
Matsubayashi (10.1016/j.peptides.2021.170611_bib0245) 1996; 93
Buscaill (10.1016/j.peptides.2021.170611_bib0070) 2019; 364
Colaianni (10.1016/j.peptides.2021.170611_bib0105) 2021; 29
Dodds (10.1016/j.peptides.2021.170611_bib0005) 2010; 11
Sun (10.1016/j.peptides.2021.170611_bib0450) 2013; 342
Liang (10.1016/j.peptides.2021.170611_bib0465) 2018; 69
Tian (10.1016/j.peptides.2021.170611_bib0535) 2019; 572
Li (10.1016/j.peptides.2021.170611_bib0520) 2014; 15
Yamada (10.1016/j.peptides.2021.170611_bib0160) 2016; 35
Gust (10.1016/j.peptides.2021.170611_bib0415) 2014
Bednarek (10.1016/j.peptides.2021.170611_bib0060) 2009; 324
Zipfel (10.1016/j.peptides.2021.170611_bib0115) 2006; 125
Meng (10.1016/j.peptides.2021.170611_bib0050) 2013; 51
Lu (10.1016/j.peptides.2021.170611_bib0490) 2010; 107
Bohm (10.1016/j.peptides.2021.170611_bib0015) 2014; 20
Krol (10.1016/j.peptides.2021.170611_bib0145) 2010; 285
Hayafune (10.1016/j.peptides.2021.170611_bib0430) 2014; 111
Matsubayashi (10.1016/j.peptides.2021.170611_bib0255) 2002; 296
Liu (10.1016/j.peptides.2021.170611_bib0365) 2012; 24
Santiago (10.1016/j.peptides.2021.170611_bib0410) 2016; 5
Li (10.1016/j.peptides.2021.170611_bib0400) 2010; 13
Heese (10.1016/j.peptides.2021.170611_bib0385) 2007; 104
Sun (10.1016/j.peptides.2021.170611_bib0560) 2018; 19
Chinchilla (10.1016/j.peptides.2021.170611_bib0380) 2007; 448
Thor (10.1016/j.peptides.2021.170611_bib0545) 2020; 588
Jonak (10.1016/j.peptides.2021.170611_bib0550) 2002; 5
Poretsky (10.1016/j.peptides.2021.170611_bib0175) 2020; 104
Rhodes (10.1016/j.peptides.2021.170611_bib0210) 2021; 12
Huffaker (10.1016/j.peptides.2021.170611_bib0125) 2007; 104
Yamaguchi (10.1016/j.peptides.2021.170611_bib0140) 2006; 103
Zhang (10.1016/j.peptides.2021.170611_bib0495) 2010; 7
Miya (10.1016/j.peptides.2021.170611_bib0315) 2007; 104
Schulze (10.1016/j.peptides.2021.170611_bib0390) 2010; 285
Mosher (10.1016/j.peptides.2021.170611_bib0260) 2013; 73
Shinya (10.1016/j.peptides.2021.170611_bib0510) 2014; 79
Willmann (10.1016/j.peptides.2021.170611_bib0370) 2011; 108
Cheval (10.1016/j.peptides.2021.170611_bib0440) 2020; 117
Gómez-Gómez (10.1016/j.peptides.2021.170611_bib0075) 2000; 5
Jurca (10.1016/j.peptides.2021.170611_bib0475) 2008; 27
Ross (10.1016/j.peptides.2021.170611_bib0155) 2014; 33
Lori (10.1016/j.peptides.2021.170611_bib0185) 2015; 66
Shi (10.1016/j.peptides.2021.170611_bib0515) 2013; 25
Bi (10.1016/j.peptides.2021.170611_bib0555) 2018; 30
Schmelz (10.1016/j.peptides.2021.170611_bib0190) 2006; 103
Zhou (10.1016/j.peptides.2021.170611_bib0035) 2020; 181
Cao (10.1016/j.peptides.2021.170611_bib0325) 2014; 3
Brutus (10.1016/j.peptides.2021.170611_bib0330) 2010; 107
Ranf (10.1016/j.peptides.2021.170611_bib0530) 2014; 14
Faulkner (10.1016/j.peptides.2021.170611_bib0435) 2013; 110
Ranf (10.1016/j.peptides.2021.170611_bib0445) 2015; 16
Lee (10.1016/j.peptides.2021.170611_bib0525) 2020; 11
Sung (10.1016/j.peptides.2021.170611_bib0300) 2021; 229
Yuan (10.1016/j.peptides.2021.170611_bib0375) 2021; 592
Hander (10.1016/j.peptides.2021.170611_bib0135) 2019; 363
Stegmann (10.1016/j.peptides.2021.170611_bib0230) 2017; 355
Ziemann (10.1016/j.peptides.2021.170611_bib0305) 2018; 4
Bar (10.1016/j.peptides.2021.170611_bib0345) 2010; 63
Roux (10.1016/j.peptides.2021.170611_bib0395) 2011; 23
Albert (10.1016/j.peptides.2021.170611_bib0355) 2015; 1
Kaku (10.1016/j.peptides.2021.170611_bib0360) 2006; 103
Wang (10.1016/j.peptides.2021.170611_bib0540) 2019; 29
Pearce (10.1016/j.peptides.2021.170611_bib0310) 2010; 107
Bartels (10.1016/j.peptides.2021.170611_bib0130) 2013; 64
Rao (10.1016/j.peptides.2021.170611_bib0485) 2018; 177
Malinovsky (10.1016/j.peptides.2021.170611_bib0065) 2014; 5
Rubartelli (10.1016/j.peptides.2021.170611_bib0030) 2007; 28
Wang (10.1016/j.peptides.2021.170611_bib0285) 2018; 4
Liebrand (10.1016/j.peptides.2021.170611_bib0420) 2013; 110
Hou (10.1016/j.peptides.2021.170611_bib0215) 2021
Yamaguchi (10.1016/j.peptides.2021.170611_bib0150) 2010; 22
Pearce (10.1016/j.peptides.2021.170611_bib0290) 2003; 278
Yoon (10.1016/j.peptides.2021.170611_bib0090) 2012; 335
References_xml – volume: 15
  start-page: 329
  year: 2014
  end-page: 338
  ident: bib0520
  article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity
  publication-title: Cell Host Microbe
– volume: 1
  start-page: 16043
  year: 2016
  ident: bib0240
  article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection
  publication-title: Nat. Microbiol.
– volume: 56
  start-page: 219
  year: 2008
  end-page: 227
  ident: bib0235
  article-title: Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis
  publication-title: Plant J.
– volume: 7
  start-page: 290
  year: 2010
  end-page: 301
  ident: bib0495
  article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector
  publication-title: Cell Host Microbe
– volume: 11
  start-page: 1838
  year: 2020
  ident: bib0525
  article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD
  publication-title: Nat. Commun.
– volume: 13
  year: 2017
  ident: bib0220
  article-title: The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
  publication-title: PLoS Genet.
– volume: 71
  start-page: 194
  year: 2012
  end-page: 204
  ident: bib0265
  article-title: The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity
  publication-title: Plant J.
– volume: 155
  start-page: 1325
  year: 2011
  end-page: 1338
  ident: bib0165
  article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
  publication-title: Plant Physiol.
– volume: 5
  start-page: 1003
  year: 2000
  end-page: 1011
  ident: bib0075
  article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Mol. Cell
– volume: 93
  start-page: 592
  year: 2018
  end-page: 613
  ident: bib0025
  article-title: Pattern recognition receptors and signaling in plant-microbe interactions
  publication-title: Plant J.
– volume: 73
  start-page: 469
  year: 2013
  end-page: 482
  ident: bib0260
  article-title: The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner
  publication-title: Plant J.
– volume: 19
  year: 2018
  ident: bib0560
  article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling
  publication-title: EMBO Rep.
– volume: 3
  year: 2014
  ident: bib0325
  article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1
  publication-title: Elife
– volume: 80
  start-page: 1072
  year: 2014
  end-page: 1084
  ident: bib0505
  article-title: OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity
  publication-title: Plant J.
– volume: 411
  start-page: 817
  year: 2001
  end-page: 820
  ident: bib0270
  article-title: Production of multiple plant hormones from a single polyprotein precursor
  publication-title: Nature
– volume: 525
  start-page: 265
  year: 2015
  end-page: 268
  ident: bib0460
  article-title: Allosteric receptor activation by the plant peptide hormone phytosulfokine
  publication-title: Nature
– volume: 572
  start-page: 131
  year: 2019
  end-page: 135
  ident: bib0535
  article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity
  publication-title: Nature
– volume: 324
  start-page: 746
  year: 2009
  end-page: 748
  ident: bib0060
  article-title: Plant-microbe interactions: chemical diversity in plant defense
  publication-title: Science
– volume: 5
  start-page: 309
  year: 2014
  ident: bib0095
  article-title: Emerging concepts about NAIP/NLRC4 inflammasomes
  publication-title: Front. Immunol.
– volume: 28
  start-page: 429
  year: 2007
  end-page: 436
  ident: bib0030
  article-title: Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox
  publication-title: Trends Immunol.
– volume: 66
  start-page: 5315
  year: 2015
  end-page: 5325
  ident: bib0185
  article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling
  publication-title: J. Exp. Bot.
– volume: 104
  start-page: 12217
  year: 2007
  end-page: 12222
  ident: bib0385
  article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 448
  start-page: 497
  year: 2007
  end-page: 500
  ident: bib0380
  article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 70
  start-page: 1349
  year: 2019
  end-page: 1365
  ident: bib0205
  article-title: The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
– volume: 110
  start-page: 10010
  year: 2013
  end-page: 10015
  ident: bib0420
  article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 103
  start-page: 8894
  year: 2006
  end-page: 8899
  ident: bib0190
  article-title: Fragments of ATP synthase mediate plant perception of insect attack
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 156
  start-page: 932
  year: 2011
  end-page: 942
  ident: bib0180
  article-title: GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes
  publication-title: Plant Physiol.
– volume: 4
  start-page: 152
  year: 2018
  end-page: 156
  ident: bib0285
  article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects
  publication-title: Nat. Plants
– volume: 296
  start-page: 1470
  year: 2002
  end-page: 1472
  ident: bib0255
  article-title: An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine
  publication-title: Science
– volume: 103
  start-page: 11086
  year: 2006
  end-page: 11091
  ident: bib0360
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 117
  start-page: 9621
  year: 2020
  end-page: 9629
  ident: bib0440
  article-title: Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 172
  year: 2018
  end-page: 180
  ident: bib0305
  article-title: An apoplastic peptide activates salicylic acid signalling in maize
  publication-title: Nat. Plants
– volume: 24
  start-page: 3406
  year: 2012
  end-page: 3419
  ident: bib0365
  article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity
  publication-title: Plant Cell
– volume: 16
  start-page: 3496
  year: 2004
  end-page: 3507
  ident: bib0110
  article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
  publication-title: Plant Cell
– volume: 110
  start-page: 5707
  year: 2013
  end-page: 5712
  ident: bib0170
  article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 779
  year: 2017
  end-page: 791
  ident: bib0040
  article-title: Sensing danger: key to activating plant immunity
  publication-title: Trends Plant Sci.
– volume: 30
  start-page: 1543
  year: 2018
  end-page: 1561
  ident: bib0555
  article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis
  publication-title: Plant Cell
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  ident: bib0050
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu. Rev. Phytopathol.
– volume: 5
  year: 2016
  ident: bib0410
  article-title: Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission
  publication-title: Elife
– volume: 110
  start-page: 9166
  year: 2013
  end-page: 9170
  ident: bib0435
  article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 66
  start-page: 5161
  year: 2015
  end-page: 5169
  ident: bib0250
  article-title: Phytosulfokine peptide signalling
  publication-title: J. Exp. Bot.
– volume: 116
  start-page: 8525
  year: 2019
  end-page: 8534
  ident: bib0120
  article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 110
  year: 2015
  end-page: 120
  ident: bib0455
  article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1
  publication-title: Cell Res.
– volume: 10
  start-page: 619
  year: 2017
  end-page: 633
  ident: bib0570
  article-title: OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice
  publication-title: Mol. Plant
– volume: 33
  start-page: 62
  year: 2014
  end-page: 75
  ident: bib0155
  article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity
  publication-title: EMBO J.
– volume: 64
  start-page: 5309
  year: 2013
  end-page: 5321
  ident: bib0130
  article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses
  publication-title: J. Exp. Bot.
– volume: 164
  start-page: 352
  year: 2014
  end-page: 364
  ident: bib0350
  article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1
  publication-title: Plant Physiol.
– volume: 5
  start-page: 415
  year: 2002
  end-page: 424
  ident: bib0550
  article-title: Complexity, cross talk and integration of plant MAP kinase signalling
  publication-title: Curr. Opin. Plant Biol.
– volume: 63
  start-page: 791
  year: 2010
  end-page: 800
  ident: bib0345
  article-title: BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1
  publication-title: Plant J.
– volume: 64
  start-page: 204
  year: 2010
  end-page: 214
  ident: bib0425
  article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
  publication-title: Plant J.
– volume: 19
  start-page: 664
  year: 2014
  end-page: 671
  ident: bib0225
  article-title: Understanding the RALF family: a tale of many species
  publication-title: Trends Plant Sci.
– volume: 13
  start-page: 509
  year: 2010
  end-page: 514
  ident: bib0400
  article-title: Multi-tasking of somatic embryogenesis receptor-like protein kinases
  publication-title: Curr. Opin. Plant Biol.
– year: 2021
  ident: bib0215
  article-title: Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor
  publication-title: bioRxiv
– volume: 278
  start-page: 30044
  year: 2003
  end-page: 30050
  ident: bib0290
  article-title: Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 2361
  year: 2015
  end-page: 2372
  ident: bib0405
  article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning
  publication-title: Curr. Biol.
– volume: 111
  start-page: E404
  year: 2014
  end-page: 413
  ident: bib0430
  article-title: Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 342
  start-page: 624
  year: 2013
  end-page: 628
  ident: bib0450
  article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex
  publication-title: Science
– volume: 5
  start-page: 178
  year: 2014
  ident: bib0065
  article-title: The role of the cell wall in plant immunity
  publication-title: Front. Plant Sci.
– volume: 69
  start-page: 267
  year: 2018
  end-page: 299
  ident: bib0465
  article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling
  publication-title: Annu. Rev. Plant Biol.
– volume: 104
  start-page: 1582
  year: 2020
  end-page: 1602
  ident: bib0175
  article-title: Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance
  publication-title: Plant J.
– volume: 104
  start-page: 10732
  year: 2007
  end-page: 10736
  ident: bib0125
  article-title: Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 47
  year: 2014
  end-page: 54
  ident: bib0015
  article-title: Immune receptor complexes at the plant cell surface
  publication-title: Curr. Opin. Plant Biol.
– volume: 1
  start-page: 15140
  year: 2015
  ident: bib0355
  article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity
  publication-title: Nat. Plants
– volume: 13
  start-page: 347
  year: 2013
  end-page: 357
  ident: bib0500
  article-title: A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity
  publication-title: Cell Host Microbe
– volume: 177
  start-page: 1679
  year: 2018
  end-page: 1690
  ident: bib0485
  article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling
  publication-title: Plant Physiol.
– volume: 103
  start-page: 10104
  year: 2006
  end-page: 10109
  ident: bib0140
  article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 363
  start-page: eaar7486
  year: 2019
  ident: bib0135
  article-title: Damage on plants activates Ca
  publication-title: Science
– volume: 335
  start-page: 859
  year: 2012
  end-page: 864
  ident: bib0090
  article-title: Structural basis of TLR5-flagellin recognition and signaling
  publication-title: Science
– volume: 229
  start-page: 3467
  year: 2021
  end-page: 3480
  ident: bib0300
  article-title: PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector
  publication-title: New Phytol.
– volume: 11
  start-page: 539
  year: 2010
  end-page: 548
  ident: bib0005
  article-title: Plant immunity: towards an integrated view of plant-pathogen interactions
  publication-title: Nat. Rev. Genet.
– volume: 79
  start-page: 56
  year: 2014
  end-page: 66
  ident: bib0510
  article-title: Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27
  publication-title: Plant J.
– volume: 592
  start-page: 105
  year: 2021
  end-page: 109
  ident: bib0375
  article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity
  publication-title: Nature
– volume: 27
  start-page: 739
  year: 2008
  end-page: 748
  ident: bib0475
  article-title: Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI)
  publication-title: Plant Cell Rep.
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  ident: bib0315
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 107
  start-page: 9452
  year: 2010
  end-page: 9457
  ident: bib0330
  article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 705
  year: 2021
  ident: bib0210
  article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2
  publication-title: Nat. Commun.
– volume: 355
  start-page: 287
  year: 2017
  end-page: 289
  ident: bib0230
  article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling
  publication-title: Science
– volume: 93
  start-page: 7623
  year: 1996
  end-page: 7627
  ident: bib0245
  article-title: Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 58
  start-page: 993
  year: 2017
  end-page: 1002
  ident: bib0055
  article-title: Conservation of chitin-induced MAPK signaling pathways in rice and arabidopsis
  publication-title: Plant Cell Physiol.
– volume: 7
  year: 2011
  ident: bib0080
  article-title: The plant pathogen Pseudomonas syringae pv. Tomato is genetically monomorphic and under strong selection to evade tomato immunity
  publication-title: PLoS Pathog.
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  ident: bib0115
  article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation
  publication-title: Cell
– volume: 22
  start-page: 508
  year: 2010
  end-page: 522
  ident: bib0150
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
– volume: 26
  start-page: 4135
  year: 2014
  end-page: 4148
  ident: bib0295
  article-title: Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato
  publication-title: Plant Cell
– volume: 35
  start-page: 46
  year: 2016
  end-page: 61
  ident: bib0160
  article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1
  publication-title: EMBO J.
– volume: 36
  start-page: 55
  year: 1998
  end-page: 62
  ident: bib0275
  article-title: Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides
  publication-title: Plant Mol. Biol.
– volume: 54
  start-page: 43
  year: 2014
  end-page: 55
  ident: bib0045
  article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity
  publication-title: Mol. Cell
– volume: 181
  start-page: 978
  year: 2020
  end-page: 989
  ident: bib0035
  article-title: Plant immunity: danger perception and signaling
  publication-title: Cell
– volume: 16
  start-page: 426
  year: 2015
  end-page: 433
  ident: bib0445
  article-title: A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana
  publication-title: Nat. Immunol.
– volume: 107
  start-page: 496
  year: 2010
  end-page: 501
  ident: bib0490
  article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 176
  start-page: 2991
  year: 2018
  end-page: 3002
  ident: bib0565
  article-title: BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis
  publication-title: Plant Physiol.
– volume: 285
  start-page: 28902
  year: 2010
  end-page: 28911
  ident: bib0320
  article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 820
  year: 2019
  end-page: 831
  ident: bib0540
  article-title: A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice
  publication-title: Cell Res.
– volume: 285
  start-page: 13471
  year: 2010
  end-page: 13479
  ident: bib0145
  article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 620
  year: 2021
  end-page: 634
  ident: bib0100
  article-title: Signatures of antagonistic pleiotropy in a bacterial flagellin epitope
  publication-title: Cell Host Microbe
– volume: 16
  start-page: 1220
  year: 2004
  end-page: 1234
  ident: bib0470
  article-title: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice
  publication-title: Plant Cell
– volume: 16
  start-page: 537
  year: 2016
  end-page: 552
  ident: bib0020
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
– volume: 108
  start-page: 19824
  year: 2011
  end-page: 19829
  ident: bib0370
  article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 343
  start-page: 290
  year: 2014
  end-page: 294
  ident: bib0335
  article-title: Identification of a plant receptor for extracellular ATP
  publication-title: Science
– volume: 23
  start-page: 2440
  year: 2011
  end-page: 2455
  ident: bib0395
  article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
– volume: 588
  start-page: 569
  year: 2020
  end-page: 573
  ident: bib0545
  article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity
  publication-title: Nature
– volume: 107
  start-page: 14921
  year: 2010
  end-page: 14925
  ident: bib0310
  article-title: A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 218
  start-page: 1167
  year: 2018
  end-page: 1178
  ident: bib0280
  article-title: Phytaspase-mediated precursor processing and maturation of the wound hormone systemin
  publication-title: New Phytol.
– volume: 117
  start-page: 31510
  year: 2020
  end-page: 31518
  ident: bib0195
  article-title: A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 364
  start-page: eaav0748
  year: 2019
  ident: bib0070
  article-title: Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides
  publication-title: Science
– volume: 25
  start-page: 1143
  year: 2013
  end-page: 1157
  ident: bib0515
  article-title: BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis
  publication-title: Plant Cell
– volume: 1
  start-page: 732
  year: 2008
  end-page: 750
  ident: bib0480
  article-title: The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress
  publication-title: Mol. Plant
– volume: 2
  start-page: 16128
  year: 2016
  ident: bib0085
  article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system
  publication-title: Nat. Plants
– start-page: 104
  year: 2014
  end-page: 111
  ident: bib0415
  article-title: Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases
  publication-title: Curr. Opin. Plant Biol.
– volume: 29
  start-page: 635
  year: 2021
  end-page: 649
  ident: bib0105
  article-title: A complex immune response to flagellin epitope variation in commensal communities
  publication-title: Cell Host Microbe
– volume: 10
  year: 2014
  ident: bib0200
  article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7
  publication-title: PLoS Pathog.
– volume: 14
  start-page: 374
  year: 2014
  ident: bib0530
  article-title: Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1
  publication-title: BMC Plant Biol.
– volume: 285
  start-page: 9444
  year: 2010
  end-page: 9451
  ident: bib0390
  article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1
  publication-title: J. Biol. Chem.
– volume: 341
  start-page: 746
  year: 2013
  end-page: 751
  ident: bib0010
  article-title: Pivoting the plant immune system from dissection to deployment
  publication-title: Science
– volume: 364
  start-page: 178
  year: 2019
  end-page: 181
  ident: bib0340
  article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants
  publication-title: Science
– volume: 104
  start-page: 19613
  year: 2007
  ident: 10.1016/j.peptides.2021.170611_bib0315
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0705147104
– volume: 80
  start-page: 1072
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0505
  article-title: OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity
  publication-title: Plant J.
  doi: 10.1111/tpj.12710
– volume: 104
  start-page: 10732
  year: 2007
  ident: 10.1016/j.peptides.2021.170611_bib0125
  article-title: Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0703343104
– volume: 12
  start-page: 705
  year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0210
  article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20932-y
– volume: 104
  start-page: 1582
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0175
  article-title: Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance
  publication-title: Plant J.
  doi: 10.1111/tpj.15022
– volume: 107
  start-page: 14921
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0310
  article-title: A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1007568107
– volume: 355
  start-page: 287
  year: 2017
  ident: 10.1016/j.peptides.2021.170611_bib0230
  article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling
  publication-title: Science
  doi: 10.1126/science.aal2541
– volume: 4
  start-page: 152
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0285
  article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0106-0
– volume: 11
  start-page: 539
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0005
  article-title: Plant immunity: towards an integrated view of plant-pathogen interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2812
– volume: 29
  start-page: 820
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0540
  article-title: A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0219-7
– volume: 22
  start-page: 779
  year: 2017
  ident: 10.1016/j.peptides.2021.170611_bib0040
  article-title: Sensing danger: key to activating plant immunity
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.07.005
– volume: 111
  start-page: E404
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0430
  article-title: Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1312099111
– volume: 36
  start-page: 55
  year: 1998
  ident: 10.1016/j.peptides.2021.170611_bib0275
  article-title: Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1005986004615
– volume: 64
  start-page: 5309
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0130
  article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert330
– volume: 107
  start-page: 9452
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0330
  article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1000675107
– volume: 70
  start-page: 1349
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0205
  article-title: The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery454
– year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0215
  article-title: Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor
  publication-title: bioRxiv
– volume: 11
  start-page: 1838
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0525
  article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15601-5
– volume: 335
  start-page: 859
  year: 2012
  ident: 10.1016/j.peptides.2021.170611_bib0090
  article-title: Structural basis of TLR5-flagellin recognition and signaling
  publication-title: Science
  doi: 10.1126/science.1215584
– volume: 5
  year: 2016
  ident: 10.1016/j.peptides.2021.170611_bib0410
  article-title: Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission
  publication-title: Elife
  doi: 10.7554/eLife.15075
– volume: 66
  start-page: 5315
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0185
  article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv236
– volume: 572
  start-page: 131
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0535
  article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity
  publication-title: Nature
  doi: 10.1038/s41586-019-1413-y
– volume: 110
  start-page: 10010
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0420
  article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1220015110
– volume: 324
  start-page: 746
  year: 2009
  ident: 10.1016/j.peptides.2021.170611_bib0060
  article-title: Plant-microbe interactions: chemical diversity in plant defense
  publication-title: Science
  doi: 10.1126/science.1171661
– volume: 181
  start-page: 978
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0035
  article-title: Plant immunity: danger perception and signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.028
– volume: 5
  start-page: 1003
  year: 2000
  ident: 10.1016/j.peptides.2021.170611_bib0075
  article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80265-8
– volume: 13
  year: 2017
  ident: 10.1016/j.peptides.2021.170611_bib0220
  article-title: The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006832
– volume: 25
  start-page: 2361
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0405
  article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.07.068
– volume: 29
  start-page: 620
  year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0100
  article-title: Signatures of antagonistic pleiotropy in a bacterial flagellin epitope
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.008
– volume: 10
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0200
  article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004331
– volume: 64
  start-page: 204
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0425
  article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04324.x
– volume: 164
  start-page: 352
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0350
  article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.230698
– volume: 16
  start-page: 1220
  year: 2004
  ident: 10.1016/j.peptides.2021.170611_bib0470
  article-title: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.020834
– volume: 296
  start-page: 1470
  year: 2002
  ident: 10.1016/j.peptides.2021.170611_bib0255
  article-title: An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine
  publication-title: Science
  doi: 10.1126/science.1069607
– volume: 364
  start-page: 178
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0340
  article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants
  publication-title: Science
  doi: 10.1126/science.aau1279
– volume: 5
  start-page: 178
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0065
  article-title: The role of the cell wall in plant immunity
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00178
– volume: 23
  start-page: 2440
  year: 2011
  ident: 10.1016/j.peptides.2021.170611_bib0395
  article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084301
– volume: 364
  start-page: eaav0748
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0070
  article-title: Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides
  publication-title: Science
  doi: 10.1126/science.aav0748
– volume: 448
  start-page: 497
  year: 2007
  ident: 10.1016/j.peptides.2021.170611_bib0380
  article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
  doi: 10.1038/nature05999
– volume: 285
  start-page: 28902
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0320
  article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.116657
– volume: 66
  start-page: 5161
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0250
  article-title: Phytosulfokine peptide signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv071
– volume: 56
  start-page: 219
  year: 2008
  ident: 10.1016/j.peptides.2021.170611_bib0235
  article-title: Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03598.x
– volume: 229
  start-page: 3467
  year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0300
  article-title: PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector
  publication-title: New Phytol.
  doi: 10.1111/nph.17128
– volume: 3
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0325
  article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1
  publication-title: Elife
  doi: 10.7554/eLife.03766
– volume: 19
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0560
  article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201745324
– volume: 25
  start-page: 1143
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0515
  article-title: BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.107904
– volume: 16
  start-page: 426
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0445
  article-title: A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3124
– volume: 29
  start-page: 635
  year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0105
  article-title: A complex immune response to flagellin epitope variation in commensal communities
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.006
– volume: 63
  start-page: 791
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0345
  article-title: BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04282.x
– volume: 588
  start-page: 569
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0545
  article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity
  publication-title: Nature
  doi: 10.1038/s41586-020-2702-1
– volume: 108
  start-page: 19824
  year: 2011
  ident: 10.1016/j.peptides.2021.170611_bib0370
  article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1112862108
– volume: 104
  start-page: 12217
  year: 2007
  ident: 10.1016/j.peptides.2021.170611_bib0385
  article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0705306104
– volume: 592
  start-page: 105
  year: 2021
  ident: 10.1016/j.peptides.2021.170611_bib0375
  article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03316-6
– volume: 342
  start-page: 624
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0450
  article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex
  publication-title: Science
  doi: 10.1126/science.1243825
– volume: 116
  start-page: 8525
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0120
  article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1818275116
– volume: 525
  start-page: 265
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0460
  article-title: Allosteric receptor activation by the plant peptide hormone phytosulfokine
  publication-title: Nature
  doi: 10.1038/nature14858
– volume: 5
  start-page: 309
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0095
  article-title: Emerging concepts about NAIP/NLRC4 inflammasomes
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00309
– volume: 58
  start-page: 993
  year: 2017
  ident: 10.1016/j.peptides.2021.170611_bib0055
  article-title: Conservation of chitin-induced MAPK signaling pathways in rice and arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx042
– volume: 103
  start-page: 10104
  year: 2006
  ident: 10.1016/j.peptides.2021.170611_bib0140
  article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0603729103
– volume: 93
  start-page: 7623
  year: 1996
  ident: 10.1016/j.peptides.2021.170611_bib0245
  article-title: Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.15.7623
– volume: 13
  start-page: 347
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0500
  article-title: A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.02.007
– volume: 73
  start-page: 469
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0260
  article-title: The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner
  publication-title: Plant J.
  doi: 10.1111/tpj.12050
– volume: 93
  start-page: 592
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0025
  article-title: Pattern recognition receptors and signaling in plant-microbe interactions
  publication-title: Plant J.
  doi: 10.1111/tpj.13808
– volume: 285
  start-page: 13471
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0145
  article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.097394
– volume: 69
  start-page: 267
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0465
  article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040540
– volume: 28
  start-page: 429
  year: 2007
  ident: 10.1016/j.peptides.2021.170611_bib0030
  article-title: Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2007.08.004
– volume: 117
  start-page: 9621
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0440
  article-title: Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1907799117
– volume: 4
  start-page: 172
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0305
  article-title: An apoplastic peptide activates salicylic acid signalling in maize
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0116-y
– volume: 278
  start-page: 30044
  year: 2003
  ident: 10.1016/j.peptides.2021.170611_bib0290
  article-title: Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304159200
– volume: 15
  start-page: 329
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0520
  article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.02.009
– volume: 156
  start-page: 932
  year: 2011
  ident: 10.1016/j.peptides.2021.170611_bib0180
  article-title: GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.173096
– volume: 103
  start-page: 8894
  issue: 23
  year: 2006
  ident: 10.1016/j.peptides.2021.170611_bib0190
  article-title: Fragments of ATP synthase mediate plant perception of insect attack
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0602328103
– volume: 24
  start-page: 3406
  year: 2012
  ident: 10.1016/j.peptides.2021.170611_bib0365
  article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.102475
– volume: 27
  start-page: 739
  year: 2008
  ident: 10.1016/j.peptides.2021.170611_bib0475
  article-title: Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI)
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-007-0494-5
– volume: 33
  start-page: 62
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0155
  article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity
  publication-title: EMBO J.
  doi: 10.1002/embj.201284303
– volume: 363
  start-page: eaar7486
  year: 2019
  ident: 10.1016/j.peptides.2021.170611_bib0135
  article-title: Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides
  publication-title: Science
  doi: 10.1126/science.aar7486
– volume: 35
  start-page: 46
  year: 2016
  ident: 10.1016/j.peptides.2021.170611_bib0160
  article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1
  publication-title: EMBO J.
  doi: 10.15252/embj.201591807
– volume: 25
  start-page: 110
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0455
  article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.161
– volume: 26
  start-page: 4135
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0295
  article-title: Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.131185
– volume: 176
  start-page: 2991
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0565
  article-title: BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01757
– volume: 54
  start-page: 43
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0045
  article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.02.021
– volume: 110
  start-page: 5707
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0170
  article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1214668110
– volume: 71
  start-page: 194
  year: 2012
  ident: 10.1016/j.peptides.2021.170611_bib0265
  article-title: The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.04950.x
– volume: 2
  start-page: 16128
  year: 2016
  ident: 10.1016/j.peptides.2021.170611_bib0085
  article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.128
– volume: 22
  start-page: 508
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0150
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068874
– volume: 107
  start-page: 496
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0490
  article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0909705107
– volume: 1
  start-page: 15140
  year: 2015
  ident: 10.1016/j.peptides.2021.170611_bib0355
  article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.140
– volume: 125
  start-page: 749
  year: 2006
  ident: 10.1016/j.peptides.2021.170611_bib0115
  article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.037
– volume: 7
  year: 2011
  ident: 10.1016/j.peptides.2021.170611_bib0080
  article-title: The plant pathogen Pseudomonas syringae pv. Tomato is genetically monomorphic and under strong selection to evade tomato immunity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002130
– volume: 411
  start-page: 817
  year: 2001
  ident: 10.1016/j.peptides.2021.170611_bib0270
  article-title: Production of multiple plant hormones from a single polyprotein precursor
  publication-title: Nature
  doi: 10.1038/35081107
– volume: 218
  start-page: 1167
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0280
  article-title: Phytaspase-mediated precursor processing and maturation of the wound hormone systemin
  publication-title: New Phytol.
  doi: 10.1111/nph.14568
– volume: 343
  start-page: 290
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0335
  article-title: Identification of a plant receptor for extracellular ATP
  publication-title: Science
  doi: 10.1126/science.343.6168.290
– volume: 20
  start-page: 47
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0015
  article-title: Immune receptor complexes at the plant cell surface
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2014.04.007
– volume: 13
  start-page: 509
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0400
  article-title: Multi-tasking of somatic embryogenesis receptor-like protein kinases
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2010.09.004
– volume: 14
  start-page: 374
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0530
  article-title: Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-014-0374-4
– volume: 155
  start-page: 1325
  year: 2011
  ident: 10.1016/j.peptides.2021.170611_bib0165
  article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.166710
– volume: 51
  start-page: 245
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0050
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102314
– volume: 285
  start-page: 9444
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0390
  article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.096842
– volume: 341
  start-page: 746
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0010
  article-title: Pivoting the plant immune system from dissection to deployment
  publication-title: Science
  doi: 10.1126/science.1236011
– volume: 7
  start-page: 290
  year: 2010
  ident: 10.1016/j.peptides.2021.170611_bib0495
  article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.03.007
– volume: 79
  start-page: 56
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0510
  article-title: Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27
  publication-title: Plant J.
  doi: 10.1111/tpj.12535
– volume: 16
  start-page: 3496
  year: 2004
  ident: 10.1016/j.peptides.2021.170611_bib0110
  article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026765
– volume: 5
  start-page: 415
  year: 2002
  ident: 10.1016/j.peptides.2021.170611_bib0550
  article-title: Complexity, cross talk and integration of plant MAP kinase signalling
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(02)00285-6
– volume: 1
  start-page: 732
  year: 2008
  ident: 10.1016/j.peptides.2021.170611_bib0480
  article-title: The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn047
– volume: 177
  start-page: 1679
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0485
  article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling
  publication-title: Plant Physiol.
– volume: 16
  start-page: 537
  year: 2016
  ident: 10.1016/j.peptides.2021.170611_bib0020
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.77
– volume: 19
  start-page: 664
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0225
  article-title: Understanding the RALF family: a tale of many species
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.06.005
– volume: 110
  start-page: 9166
  year: 2013
  ident: 10.1016/j.peptides.2021.170611_bib0435
  article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1203458110
– volume: 10
  start-page: 619
  year: 2017
  ident: 10.1016/j.peptides.2021.170611_bib0570
  article-title: OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.01.006
– volume: 117
  start-page: 31510
  year: 2020
  ident: 10.1016/j.peptides.2021.170611_bib0195
  article-title: A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2018415117
– start-page: 104
  year: 2014
  ident: 10.1016/j.peptides.2021.170611_bib0415
  article-title: Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2014.07.007
– volume: 103
  start-page: 11086
  year: 2006
  ident: 10.1016/j.peptides.2021.170611_bib0360
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0508882103
– volume: 1
  start-page: 16043
  year: 2016
  ident: 10.1016/j.peptides.2021.170611_bib0240
  article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.43
– volume: 30
  start-page: 1543
  year: 2018
  ident: 10.1016/j.peptides.2021.170611_bib0555
  article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00981
SSID ssj0004498
Score 2.4229863
Snippet •Plants recognize conserved peptides derived from pathogens by pattern recognition receptors (PRRs).•Various types of plant-derived peptides are recognized by...
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 170611
SubjectTerms calcium
Cell Membrane - metabolism
DAMP
Host-Pathogen Interactions
mitogen-activated protein kinase
Mitogen-Activated Protein Kinases - metabolism
PAMP
Pathogen-Associated Molecular Pattern Molecules - immunology
Pathogen-Associated Molecular Pattern Molecules - metabolism
Pattern-recognition receptor
Pattern-triggered immunity
peptides
Peptides - immunology
Peptides - physiology
Phytocytokine
Plant Immunity - physiology
Plant Proteins - immunology
Plant Proteins - metabolism
plasma membrane
Reactive Oxygen Species
Receptors, Pattern Recognition - chemistry
Receptors, Pattern Recognition - immunology
Receptors, Pattern Recognition - metabolism
Signal Transduction
Title Pathogen- and plant-derived peptides trigger plant immunity
URI https://dx.doi.org/10.1016/j.peptides.2021.170611
https://www.ncbi.nlm.nih.gov/pubmed/34303752
https://www.proquest.com/docview/2555336507
https://www.proquest.com/docview/2636462836
Volume 144
WOSCitedRecordID wos000687890400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5169
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004498
  issn: 0196-9781
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_WdLC9lK7dR7q2eDD2MpTFlmXJ7CmUlm2MElgG2ZNRZKUktHZonK7773eSLDdm7box9mKCJUXK_S6n08f9DuA1w9c00hKtH2pwrKYhmdA8JMIc5Wo-YdOJRfozPz0V43E6rNPcLW06AV4U4vo6XfxXqPEdgm1CZ_8C7uZL8QV-RtDxibDj84-AH6JPV2IpcRwA5yg6kmPHV-haLswdltywOuCi3MT72uK3MxskUrVOeIe-6i3pevw-Qn9tH-GbvJBnJrOKNR3lfNaYcvldLqXLjj1arqryYrW-1RCFzaW1ev_Lx8C0rmgagh1imLPcjOLMqOCUmBO4lp11RI-_2Gy3fTDveRH0TNc9Q-tTm-E2H_YXy-iD_UWhJayLN2Az4iwVHdgcfDwef7oJi41tKuRmgGsB4rf3dpdvctfaw_ogo23YqhcPwcCB_gQe6GIHdgeFRKH-CN4E9jqvPSfZgUdHPpXfLrxvdCJAnQhaOhH4IQa1TrjiwOvEU_h6cjw6-kDqrBlE4aRXkRBnLMk5Gte-plqLRIZimiQa_WAmFNMCtUNSSsUUvUPVT4RMFfokKk2URthy-gw6RVnoFxBwXMuGqi8kS5M4Z7HkWkq02NHEUA6lcReYl1emakp5k9nkPPN3B-eZ_xGZkXPm5NyFd027hSNVubdF6uHIatfQuXwZatG9bV95_DKUuzkQk4UuV1iJMVzt4BqF_6ZOQhMTv02TLjx34DdjpjE1KaSjvX8Y3Ut4fPNX24dOdbnSB_BQXVWz5eUhbPCxOKwV-ycR_ag6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogen-+and+plant-derived+peptides+trigger+plant+immunity&rft.jtitle=Peptides+%28New+York%2C+N.Y.+%3A+1980%29&rft.au=Yamaguchi%2C+Koji&rft.au=Kawasaki%2C+Tsutomu&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0196-9781&rft.eissn=1873-5169&rft.volume=144&rft_id=info:doi/10.1016%2Fj.peptides.2021.170611&rft.externalDocID=S0196978121001194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-9781&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-9781&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-9781&client=summon