Prospects of organic electrode materials for practical lithium batteries
Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead...
Uložené v:
| Vydané v: | Nature reviews. Chemistry Ročník 4; číslo 3; s. 127 - 142 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.03.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 2397-3358, 2397-3358 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.
Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability. |
|---|---|
| AbstractList | Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability. Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability. |
| Author | Lu, Yong Chen, Jun |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-2094-1524 surname: Lu fullname: Lu, Yong organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University – sequence: 2 givenname: Jun orcidid: 0000-0001-8604-9689 surname: Chen fullname: Chen, Jun email: chenabc@nankai.edu.cn organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37128020$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctKxDAUQIMoPucD3EjBjZtqXm2SpYgvGNCFrkOa3mqkbcYkXfj3poyDIigh5BLOudzHAdoe_QgIHRN8TjCTF5GTSuAS03xJjUu1hfYpU6JkrJLbP-I9tIjxDWNMFONKqF20xwShMpv76O4x-LgCm2Lhu8KHFzM6W0Cff4JvoRhMguBMH4vOh2IVjE3Omr7oXXp101A0Js0AxCO002UMFl_vIXq-uX66uiuXD7f3V5fL0vK6TmXNSUNBEapqZmTHmFIgOLFtW0louWiwlbyGxrSAiWWypU1LO9KxmiksmGKH6GyddxX8-wQx6cFFC31vRvBT1LkvWUlRK5LR01_om5_CmKvTlIsKY5HPvxQTglMm8UydfFFTM0CrV8ENJnzozSQzINaAzQONATptXTLJ-TEF43pNsJ7Xptdr01nR89r03BH5ZW6S_-fQtRMzO75A-C76b-kTgT-m1A |
| CitedBy_id | crossref_primary_10_1002_anie_202116289 crossref_primary_10_1016_j_cej_2023_142434 crossref_primary_10_1002_ange_202403331 crossref_primary_10_1002_anie_202106238 crossref_primary_10_1016_j_pmatsci_2025_101543 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1016_j_ensm_2025_104539 crossref_primary_10_1016_j_ijhydene_2022_01_146 crossref_primary_10_1016_j_jelechem_2023_117714 crossref_primary_10_1002_smm2_1110 crossref_primary_10_1016_j_est_2025_118393 crossref_primary_10_1002_smll_202502029 crossref_primary_10_1149_1945_7111_ad4b5f crossref_primary_10_1002_ange_202506466 crossref_primary_10_1016_j_cej_2023_141335 crossref_primary_10_1002_ange_202424025 crossref_primary_10_3390_nano11123259 crossref_primary_10_1016_j_est_2022_105471 crossref_primary_10_1016_j_jpowsour_2023_234033 crossref_primary_10_1038_s41570_024_00597_z crossref_primary_10_1002_adfm_202111043 crossref_primary_10_1016_j_inoche_2023_111511 crossref_primary_10_6023_A25030076 crossref_primary_10_1016_j_jpowsour_2024_234521 crossref_primary_10_1002_adfm_202505986 crossref_primary_10_1002_ange_202117661 crossref_primary_10_1007_s11426_024_2163_1 crossref_primary_10_1016_j_cej_2020_127454 crossref_primary_10_1002_adma_202106079 crossref_primary_10_1038_s41557_025_01899_5 crossref_primary_10_1002_adma_202203605 crossref_primary_10_1016_j_jallcom_2022_168505 crossref_primary_10_1002_ange_202209642 crossref_primary_10_1016_j_cej_2023_142658 crossref_primary_10_1002_aenm_202400702 crossref_primary_10_1016_j_apcatb_2024_124507 crossref_primary_10_1016_j_cej_2024_153833 crossref_primary_10_1002_ange_202507570 crossref_primary_10_3390_ijms24021067 crossref_primary_10_1002_smll_202103885 crossref_primary_10_1039_D4EE02777A crossref_primary_10_1038_s41598_022_07853_6 crossref_primary_10_1002_anie_202312172 crossref_primary_10_1039_D4CS01072H crossref_primary_10_1002_anie_202302539 crossref_primary_10_1016_j_jcis_2024_01_033 crossref_primary_10_1016_j_nanoen_2021_105792 crossref_primary_10_1002_adma_202406106 crossref_primary_10_1002_anie_202421928 crossref_primary_10_1002_aenm_202403164 crossref_primary_10_1002_celc_202500099 crossref_primary_10_1016_j_compositesb_2022_110301 crossref_primary_10_1002_anie_202016875 crossref_primary_10_1016_j_coco_2021_101019 crossref_primary_10_1007_s12598_023_02358_1 crossref_primary_10_1016_j_jpcs_2025_112980 crossref_primary_10_1002_adfm_202423533 crossref_primary_10_1016_j_cej_2024_158492 crossref_primary_10_1002_smtd_202200455 crossref_primary_10_1002_advs_202302490 crossref_primary_10_1002_batt_202400607 crossref_primary_10_1002_anie_202302754 crossref_primary_10_1016_j_partic_2020_09_004 crossref_primary_10_1002_marc_202401121 crossref_primary_10_1007_s12274_023_6401_8 crossref_primary_10_1021_acs_energyfuels_5c01729 crossref_primary_10_1002_ange_202115046 crossref_primary_10_1016_j_ensm_2025_104328 crossref_primary_10_1016_j_nanoen_2024_110534 crossref_primary_10_1002_advs_202500906 crossref_primary_10_1002_aenm_202201347 crossref_primary_10_20517_cs_2024_14 crossref_primary_10_1002_smll_202405974 crossref_primary_10_1002_cplu_202300620 crossref_primary_10_1002_aenm_202203532 crossref_primary_10_1002_cssc_202301586 crossref_primary_10_1002_ange_202107216 crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_1002_ange_202512956 crossref_primary_10_1002_anie_202115180 crossref_primary_10_1002_batt_202200197 crossref_primary_10_1016_j_nanoen_2024_110520 crossref_primary_10_1021_jacs_2c07575 crossref_primary_10_1039_D4CP04811C crossref_primary_10_1016_j_cej_2024_150527 crossref_primary_10_1038_s44359_025_00079_5 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1021_jacs_3c12358 crossref_primary_10_1016_j_cej_2023_141997 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1016_j_colsurfa_2022_129707 crossref_primary_10_3390_polym15183728 crossref_primary_10_1016_j_jpowsour_2021_230363 crossref_primary_10_1002_aenm_202203540 crossref_primary_10_1038_s41467_021_24701_9 crossref_primary_10_1002_adfm_202209848 crossref_primary_10_1016_j_cej_2025_166152 crossref_primary_10_1016_j_cej_2023_147293 crossref_primary_10_1016_j_jcis_2024_07_170 crossref_primary_10_1039_D1MH00128K crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1002_sus2_180 crossref_primary_10_1016_j_cej_2022_138052 crossref_primary_10_1088_1674_4926_41_9_091704 crossref_primary_10_1002_advs_202310239 crossref_primary_10_1002_admi_202200133 crossref_primary_10_1002_sus2_67 crossref_primary_10_1002_anie_202003198 crossref_primary_10_1016_j_mtchem_2023_101379 crossref_primary_10_3390_molecules28247993 crossref_primary_10_1002_adfm_202401367 crossref_primary_10_1002_smsc_202200101 crossref_primary_10_1002_chem_202202915 crossref_primary_10_1002_adfm_202400032 crossref_primary_10_1039_D1MH00672J crossref_primary_10_1039_D3EE02897F crossref_primary_10_1002_slct_202400538 crossref_primary_10_1016_j_mtchem_2022_101082 crossref_primary_10_1002_aenm_202406069 crossref_primary_10_3390_cryst15010031 crossref_primary_10_1002_anie_202301629 crossref_primary_10_1039_D2EE00566B crossref_primary_10_1039_D5TA02210J crossref_primary_10_1007_s12633_021_01269_z crossref_primary_10_1002_cssc_202100872 crossref_primary_10_1016_j_cjche_2024_11_018 crossref_primary_10_1016_j_electacta_2022_141082 crossref_primary_10_1002_advs_202205069 crossref_primary_10_1016_j_electacta_2023_143302 crossref_primary_10_1021_acs_jcim_5c00291 crossref_primary_10_1093_nsr_nwae146 crossref_primary_10_1039_D1SE01649K crossref_primary_10_1002_advs_202301993 crossref_primary_10_1038_s41524_025_01590_w crossref_primary_10_1002_anie_202203646 crossref_primary_10_1002_adfm_202214304 crossref_primary_10_1002_cssc_202500753 crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1016_j_est_2025_117248 crossref_primary_10_1002_ange_202011482 crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_1016_j_est_2024_112984 crossref_primary_10_1002_ange_202011484 crossref_primary_10_1039_D3RA06060H crossref_primary_10_1016_j_jpowsour_2021_230963 crossref_primary_10_1016_j_jpowsour_2021_230722 crossref_primary_10_1007_s10800_023_01964_2 crossref_primary_10_1002_anie_202215864 crossref_primary_10_1002_anie_202216713 crossref_primary_10_1038_s41467_023_40969_5 crossref_primary_10_1002_ente_202101072 crossref_primary_10_1007_s11426_023_1654_5 crossref_primary_10_1016_j_cej_2023_141386 crossref_primary_10_1039_D4SC07932A crossref_primary_10_1021_jacs_2c08273 crossref_primary_10_1002_adfm_202100505 crossref_primary_10_1002_adsc_202301395 crossref_primary_10_1016_j_ccr_2022_214772 crossref_primary_10_1002_slct_202200300 crossref_primary_10_1002_adfm_202201038 crossref_primary_10_1002_ange_202002773 crossref_primary_10_1016_j_cclet_2023_108715 crossref_primary_10_3390_ijms26083838 crossref_primary_10_1002_smll_202105825 crossref_primary_10_1016_j_seppur_2025_133132 crossref_primary_10_1002_cssc_202202159 crossref_primary_10_3390_coatings12121912 crossref_primary_10_1002_ange_202504928 crossref_primary_10_1016_j_cej_2023_143316 crossref_primary_10_1002_smll_202312237 crossref_primary_10_1016_j_cej_2025_162419 crossref_primary_10_1002_adfm_202411362 crossref_primary_10_1002_ange_202207043 crossref_primary_10_1002_adfm_202411127 crossref_primary_10_1002_ange_202508057 crossref_primary_10_1002_smll_202305701 crossref_primary_10_1016_j_apsusc_2024_159920 crossref_primary_10_1016_j_cej_2023_143787 crossref_primary_10_1016_j_jcis_2025_137327 crossref_primary_10_1002_eom2_12178 crossref_primary_10_1002_aenm_202501494 crossref_primary_10_1002_ange_202406465 crossref_primary_10_3390_su142316001 crossref_primary_10_1002_anie_202503067 crossref_primary_10_1002_ange_202511229 crossref_primary_10_1016_j_electacta_2021_138826 crossref_primary_10_1002_batt_202200110 crossref_primary_10_1002_aenm_202001445 crossref_primary_10_1016_j_materresbull_2025_113775 crossref_primary_10_1002_cssc_202301725 crossref_primary_10_1002_cssc_202402231 crossref_primary_10_1016_j_cej_2025_161788 crossref_primary_10_1002_aenm_202002780 crossref_primary_10_1002_aenm_202500150 crossref_primary_10_1002_aenm_202002523 crossref_primary_10_1007_s41918_025_00250_3 crossref_primary_10_1002_advs_202103773 crossref_primary_10_1002_aenm_202102498 crossref_primary_10_1007_s11426_023_1969_3 crossref_primary_10_1002_smll_202405118 crossref_primary_10_1039_D0QI01104E crossref_primary_10_3390_ma16206687 crossref_primary_10_1016_j_jechem_2024_07_062 crossref_primary_10_1002_smll_202004369 crossref_primary_10_1016_j_est_2024_115026 crossref_primary_10_1016_j_jpowsour_2022_232110 crossref_primary_10_1002_anie_202317393 crossref_primary_10_1002_marc_202000725 crossref_primary_10_1073_pnas_2116775119 crossref_primary_10_1002_cssc_202401975 crossref_primary_10_1002_wcms_1660 crossref_primary_10_1039_D2SC04676H crossref_primary_10_1016_j_apsusc_2022_152580 crossref_primary_10_1002_batt_202300001 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1021_jacs_3c08711 crossref_primary_10_1002_adfm_202402178 crossref_primary_10_1016_j_cej_2025_166537 crossref_primary_10_1002_adfm_202108798 crossref_primary_10_1007_s40843_023_2545_y crossref_primary_10_1039_D4SC07400A crossref_primary_10_1002_ange_202217710 crossref_primary_10_1002_slct_202201683 crossref_primary_10_1021_jacs_4c11663 crossref_primary_10_3390_polym15132920 crossref_primary_10_1016_j_cclet_2022_108095 crossref_primary_10_1016_j_jechem_2022_03_052 crossref_primary_10_1002_adfm_202110871 crossref_primary_10_1002_anie_202307365 crossref_primary_10_1016_j_jpowsour_2023_233737 crossref_primary_10_1016_j_jpowsour_2020_228515 crossref_primary_10_1002_advs_202401314 crossref_primary_10_1002_aenm_202001658 crossref_primary_10_1016_j_jechem_2024_06_030 crossref_primary_10_1016_j_jpowsour_2022_231291 crossref_primary_10_1002_eem2_70093 crossref_primary_10_1016_j_electacta_2023_142735 crossref_primary_10_1002_anie_202511399 crossref_primary_10_1038_s41578_024_00657_2 crossref_primary_10_1002_smll_202303432 crossref_primary_10_1016_j_cej_2023_148503 crossref_primary_10_1016_j_mtener_2021_100812 crossref_primary_10_1016_j_electacta_2024_145234 crossref_primary_10_1002_macp_202400387 crossref_primary_10_1002_adfm_202402199 crossref_primary_10_1016_j_jpowsour_2025_236794 crossref_primary_10_1002_smll_202200463 crossref_primary_10_1016_j_cej_2022_139576 crossref_primary_10_1016_j_cej_2022_139570 crossref_primary_10_1016_j_cej_2024_148806 crossref_primary_10_1016_j_jpowsour_2022_231041 crossref_primary_10_1016_j_jechem_2025_02_051 crossref_primary_10_1002_adfm_202210343 crossref_primary_10_1002_anie_202420160 crossref_primary_10_1016_j_cej_2024_158831 crossref_primary_10_1002_aenm_202503468 crossref_primary_10_1002_ange_202511399 crossref_primary_10_1002_ange_202110373 crossref_primary_10_1016_j_cej_2022_140562 crossref_primary_10_1007_s12274_020_2991_6 crossref_primary_10_1002_smtd_202101131 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1021_jacs_3c11931 crossref_primary_10_1016_j_ijhydene_2021_08_203 crossref_primary_10_1016_j_jechem_2021_07_019 crossref_primary_10_1016_j_electacta_2022_141302 crossref_primary_10_1016_j_est_2025_116604 crossref_primary_10_1016_j_cogsc_2020_100370 crossref_primary_10_3390_ma16010177 crossref_primary_10_1002_adma_202301540 crossref_primary_10_1016_j_mtener_2025_101849 crossref_primary_10_1039_D3SC05843C crossref_primary_10_1002_advs_202200187 crossref_primary_10_1016_j_jpowsour_2022_231061 crossref_primary_10_1016_j_apenergy_2024_123665 crossref_primary_10_1002_adma_202310245 crossref_primary_10_1002_aenm_202101126 crossref_primary_10_1016_j_jpowsour_2022_232149 crossref_primary_10_1002_aenm_202102698 crossref_primary_10_1039_D1EE03691B crossref_primary_10_1002_cssc_202201219 crossref_primary_10_1002_adma_202410262 crossref_primary_10_1039_D4NR00292J crossref_primary_10_1039_D4SC07732F crossref_primary_10_1002_cnl2_188 crossref_primary_10_1039_D2NJ01587K crossref_primary_10_1039_D3EE00211J crossref_primary_10_1016_j_jpowsour_2024_235134 crossref_primary_10_1039_D3EE00235G crossref_primary_10_1021_jacs_2c11264 crossref_primary_10_1002_aenm_202403983 crossref_primary_10_1016_j_mser_2025_100974 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_1002_aenm_202301443 crossref_primary_10_1016_j_jechem_2021_07_027 crossref_primary_10_1002_adfm_202105027 crossref_primary_10_1002_ange_202112112 crossref_primary_10_1007_s12598_022_02097_9 crossref_primary_10_1007_s40242_025_5036_6 crossref_primary_10_1016_j_jechem_2025_01_062 crossref_primary_10_1002_adma_202104150 crossref_primary_10_1002_celc_202400206 crossref_primary_10_3390_polym16050687 crossref_primary_10_1002_aenm_202101562 crossref_primary_10_1002_ejic_202400649 crossref_primary_10_1002_anie_202209642 crossref_primary_10_1002_cey2_632 crossref_primary_10_1002_adfm_202204066 crossref_primary_10_1002_pol_20250107 crossref_primary_10_1016_j_jelechem_2021_115234 crossref_primary_10_1002_celc_202400212 crossref_primary_10_1016_j_cej_2022_139951 crossref_primary_10_1016_j_ensm_2025_104275 crossref_primary_10_1002_aenm_202002917 crossref_primary_10_1016_j_jcis_2023_07_208 crossref_primary_10_1038_s41586_024_08465_y crossref_primary_10_1007_s40843_025_3566_3 crossref_primary_10_1039_D4LP00320A crossref_primary_10_1002_ange_202004587 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1039_D2SC03980J crossref_primary_10_1002_anie_202011484 crossref_primary_10_1021_acsaem_5c01195 crossref_primary_10_1002_anie_202011482 crossref_primary_10_1002_cssc_202201442 crossref_primary_10_1002_anie_202501743 crossref_primary_10_1039_D5SC01955A crossref_primary_10_1039_D0QM01012J crossref_primary_10_1002_ange_202420160 crossref_primary_10_1016_j_ensm_2025_104254 crossref_primary_10_1002_adma_202312486 crossref_primary_10_1016_j_cclet_2024_110305 crossref_primary_10_1002_anie_202002773 crossref_primary_10_1002_adfm_202407494 crossref_primary_10_1016_j_jcis_2021_05_081 crossref_primary_10_1016_j_jssc_2023_124305 crossref_primary_10_1002_advs_202503485 crossref_primary_10_1002_anie_202406465 crossref_primary_10_1016_j_jechem_2024_05_009 crossref_primary_10_1002_adsu_202400421 crossref_primary_10_1007_s40843_023_2772_5 crossref_primary_10_3390_polym16101401 crossref_primary_10_1002_anie_202103569 crossref_primary_10_1038_s41563_021_00951_2 crossref_primary_10_1002_adfm_202202919 crossref_primary_10_1002_advs_202513052 crossref_primary_10_1002_app_57372 crossref_primary_10_1002_smll_202412769 crossref_primary_10_1038_s41428_022_00708_x crossref_primary_10_1002_cnl2_100 crossref_primary_10_1039_D1EE03163E crossref_primary_10_1002_anie_202117511 crossref_primary_10_1002_batt_202300472 crossref_primary_10_1002_batt_202100146 crossref_primary_10_1073_pnas_2320012121 crossref_primary_10_26599_NR_2025_94907761 crossref_primary_10_1002_adma_202313388 crossref_primary_10_1007_s12209_020_00274_4 crossref_primary_10_1002_aenm_202203253 crossref_primary_10_1016_j_est_2024_112374 crossref_primary_10_1016_j_jpowsour_2022_231002 crossref_primary_10_3390_polym13111673 crossref_primary_10_1002_smll_202410374 crossref_primary_10_1021_acsami_5c08451 crossref_primary_10_1002_advs_202306680 crossref_primary_10_1021_acs_macromol_4c01738 crossref_primary_10_1002_cey2_612 crossref_primary_10_3390_polym15030639 crossref_primary_10_1016_j_jpowsour_2022_232338 crossref_primary_10_1016_j_nanoen_2023_108893 crossref_primary_10_1016_j_jallcom_2025_180907 crossref_primary_10_1039_D4SC01083C crossref_primary_10_1002_adfm_202411715 crossref_primary_10_1002_cssc_202501246 crossref_primary_10_1002_ange_202016576 crossref_primary_10_1016_j_jechem_2022_01_005 crossref_primary_10_1002_aenm_202402247 crossref_primary_10_1002_aenm_202402489 crossref_primary_10_1038_s41563_020_00869_1 crossref_primary_10_1002_advs_202506749 crossref_primary_10_1021_jacs_1c04591 crossref_primary_10_1038_s41557_025_01866_0 crossref_primary_10_1016_j_jpowsour_2023_232865 crossref_primary_10_3390_molecules28145351 crossref_primary_10_1002_aenm_202204353 crossref_primary_10_1016_j_cej_2023_143090 crossref_primary_10_1021_jacs_2c06527 crossref_primary_10_3390_molecules27030586 crossref_primary_10_1007_s40843_020_1389_x crossref_primary_10_1002_adfm_202407452 crossref_primary_10_1038_s41467_025_60355_7 crossref_primary_10_1002_ange_202008960 crossref_primary_10_1016_j_apmt_2023_101845 crossref_primary_10_1002_chem_202303320 crossref_primary_10_1002_ange_202503067 crossref_primary_10_3390_inorganics10110176 crossref_primary_10_1016_j_cej_2022_137920 crossref_primary_10_1002_batt_202400537 crossref_primary_10_1002_ange_202302754 crossref_primary_10_1016_j_cej_2022_134651 crossref_primary_10_1021_acsaelm_5c00069 crossref_primary_10_1016_j_cej_2020_126463 crossref_primary_10_1002_aenm_202304337 crossref_primary_10_1016_j_jpowsour_2022_231824 crossref_primary_10_1002_ange_202016875 crossref_primary_10_1016_j_electacta_2023_143498 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1016_j_jcis_2022_06_072 crossref_primary_10_1002_anie_202107216 crossref_primary_10_1016_j_pmatsci_2022_100960 crossref_primary_10_1016_j_jpowsour_2021_230464 crossref_primary_10_1039_D4EE00367E crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1016_j_nanoen_2023_108297 crossref_primary_10_1007_s11581_022_04803_0 crossref_primary_10_1021_jacs_2c02196 crossref_primary_10_1021_jacs_2c06550 crossref_primary_10_1002_anie_202207043 crossref_primary_10_1002_ange_202302539 crossref_primary_10_1038_s41467_021_27313_5 crossref_primary_10_1016_j_jpowsour_2021_230434 crossref_primary_10_1002_smll_202502591 crossref_primary_10_1016_j_matchemphys_2022_126430 crossref_primary_10_1016_j_cej_2021_133055 crossref_primary_10_1021_acs_jpcb_5c01001 crossref_primary_10_1002_adfm_202010445 crossref_primary_10_1002_ange_202216047 crossref_primary_10_1002_aenm_202303033 crossref_primary_10_1002_anie_202507570 crossref_primary_10_1002_adma_202210082 crossref_primary_10_1002_ange_202301629 crossref_primary_10_1016_j_cej_2022_135540 crossref_primary_10_1016_j_enchem_2020_100030 crossref_primary_10_1088_2752_5724_acdd86 crossref_primary_10_1002_ange_202421928 crossref_primary_10_1051_e3sconf_202337502010 crossref_primary_10_1002_ece2_76 crossref_primary_10_1002_adma_202107226 crossref_primary_10_1002_celc_202001396 crossref_primary_10_1002_ece2_69 crossref_primary_10_1002_ange_202011144 crossref_primary_10_1002_ange_202116289 crossref_primary_10_1016_j_ccr_2025_216604 crossref_primary_10_1016_j_jiec_2025_08_003 crossref_primary_10_1016_j_chempr_2022_09_015 crossref_primary_10_1007_s40820_024_01495_1 crossref_primary_10_1039_D1RA03068J crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1016_j_mtchem_2025_102711 crossref_primary_10_1002_adma_202211152 crossref_primary_10_1016_j_progpolymsci_2021_101474 crossref_primary_10_1039_D5CS00053J crossref_primary_10_1002_anie_202424025 crossref_primary_10_1039_D3SE00406F crossref_primary_10_1002_cssc_202301468 crossref_primary_10_1039_D4EE00520A crossref_primary_10_1002_cssc_202301223 crossref_primary_10_1038_s41467_025_59892_y crossref_primary_10_1016_j_cej_2022_137745 crossref_primary_10_1002_chem_202103088 crossref_primary_10_1016_j_cej_2025_166260 crossref_primary_10_1002_adfm_202112225 crossref_primary_10_1002_adfm_202208403 crossref_primary_10_1002_batt_202500136 crossref_primary_10_1002_anie_202115046 crossref_primary_10_1016_j_est_2025_118257 crossref_primary_10_1021_jacs_4c16492 crossref_primary_10_1016_j_cej_2024_157022 crossref_primary_10_1039_D3RA02269B crossref_primary_10_1002_ange_202106238 crossref_primary_10_1016_j_electacta_2021_139628 crossref_primary_10_1016_j_mtener_2025_102001 crossref_primary_10_1002_batt_202500360 crossref_primary_10_1021_jacs_4c04044 crossref_primary_10_1002_adfm_202500197 crossref_primary_10_1002_ange_202115180 crossref_primary_10_1039_D5NR02473K crossref_primary_10_1002_anie_202512956 crossref_primary_10_1039_D1SC07157B crossref_primary_10_1039_D5CC01571E crossref_primary_10_1002_adma_202109658 crossref_primary_10_1002_adma_202200077 crossref_primary_10_1016_j_coco_2025_102307 crossref_primary_10_1016_j_pnsc_2024_10_008 crossref_primary_10_1002_batt_202300090 crossref_primary_10_1002_ange_202312172 crossref_primary_10_1016_j_electacta_2025_146481 crossref_primary_10_1016_j_jpowsour_2020_229112 crossref_primary_10_1016_j_jpowsour_2020_229114 crossref_primary_10_1002_adfm_202401001 crossref_primary_10_1002_sstr_202400392 crossref_primary_10_1016_j_cej_2025_164519 crossref_primary_10_1016_j_jpowsour_2024_234491 crossref_primary_10_1002_anie_202403775 crossref_primary_10_1039_D4EE02835J crossref_primary_10_1016_j_cej_2025_161245 crossref_primary_10_1016_j_jcis_2022_02_008 crossref_primary_10_1002_ange_202501743 crossref_primary_10_1016_j_mseb_2024_117886 crossref_primary_10_1002_anie_202416845 crossref_primary_10_1039_D0RA01997F crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_1016_j_jssc_2024_125059 crossref_primary_10_1002_anie_202403331 crossref_primary_10_1002_EXP_20220066 crossref_primary_10_1007_s11426_021_9985_x crossref_primary_10_1002_batt_202200036 crossref_primary_10_1016_j_cej_2025_160123 crossref_primary_10_1002_smll_202105927 crossref_primary_10_1002_celc_202300389 crossref_primary_10_1002_bte2_20220059 crossref_primary_10_1016_j_jcis_2024_07_083 crossref_primary_10_1002_cssc_202301809 crossref_primary_10_1002_adma_202416427 crossref_primary_10_1007_s11581_024_05656_5 crossref_primary_10_1002_adma_202416661 crossref_primary_10_1016_j_jpowsour_2024_234226 crossref_primary_10_1002_ange_202103569 crossref_primary_10_1002_adma_202306015 crossref_primary_10_1002_aenm_202100939 crossref_primary_10_1039_D4SC02699C crossref_primary_10_1002_anie_202423118 crossref_primary_10_1002_tcr_202000074 crossref_primary_10_1016_j_cej_2024_151103 crossref_primary_10_1016_j_polymer_2022_125356 crossref_primary_10_1093_nsr_nwae045 crossref_primary_10_1002_adma_202405747 crossref_primary_10_1002_aenm_202003542 crossref_primary_10_1016_j_etran_2023_100261 crossref_primary_10_1016_j_jechem_2020_04_053 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1002_adma_202108384 crossref_primary_10_1016_j_est_2023_110323 crossref_primary_10_1039_D4NR02966F crossref_primary_10_1016_j_jpowsour_2024_235782 crossref_primary_10_1016_j_cej_2022_139076 crossref_primary_10_1016_j_est_2023_110326 crossref_primary_10_1002_adma_202203154 crossref_primary_10_1016_j_jcis_2023_04_177 crossref_primary_10_1016_j_coelec_2020_05_006 crossref_primary_10_1002_anie_202506466 crossref_primary_10_1016_j_orgel_2020_105743 crossref_primary_10_1016_j_clay_2024_107570 crossref_primary_10_1002_batt_202000038 crossref_primary_10_1002_batt_202200463 crossref_primary_10_1016_j_jallcom_2022_165559 crossref_primary_10_1002_advs_202103798 crossref_primary_10_1016_j_rser_2025_116286 crossref_primary_10_1007_s11426_025_2786_y crossref_primary_10_1002_anie_202016576 crossref_primary_10_1002_batt_202400325 crossref_primary_10_1016_j_cej_2024_151320 crossref_primary_10_1002_adfm_202309552 crossref_primary_10_1016_j_cej_2021_134353 crossref_primary_10_1002_adma_202101788 crossref_primary_10_1002_anie_202317135 crossref_primary_10_1073_pnas_2202449119 crossref_primary_10_1002_adma_202311401 crossref_primary_10_1039_D0EE03356A crossref_primary_10_1039_D1QI00964H crossref_primary_10_1016_j_jcis_2022_03_091 crossref_primary_10_1002_anie_202217710 crossref_primary_10_1007_s40820_024_01573_4 crossref_primary_10_1007_s10008_023_05493_y crossref_primary_10_1007_s41918_024_00218_9 crossref_primary_10_1063_5_0255382 crossref_primary_10_1039_D5GC01964H crossref_primary_10_1002_ange_202117511 crossref_primary_10_1002_anie_202004587 crossref_primary_10_1002_adfm_202424329 crossref_primary_10_1002_batt_202400312 crossref_primary_10_1002_cssc_202301847 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1007_s40242_021_1345_6 crossref_primary_10_1016_j_orgel_2020_105966 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1002_adfm_202111307 crossref_primary_10_1002_batt_202200406 crossref_primary_10_1002_aenm_202003735 crossref_primary_10_1021_jacs_3c06668 crossref_primary_10_1016_j_mtphys_2023_101253 crossref_primary_10_1039_D0NR07500K crossref_primary_10_1039_D4EE05871B crossref_primary_10_1016_j_est_2023_107482 crossref_primary_10_1016_j_est_2023_107241 crossref_primary_10_1016_j_jallcom_2024_176275 crossref_primary_10_1002_smll_202304668 crossref_primary_10_1002_anie_202112112 crossref_primary_10_1002_marc_202500133 crossref_primary_10_1103_PhysRevA_106_032428 crossref_primary_10_1002_pssa_202100710 crossref_primary_10_1016_S1872_5805_21_60001_X crossref_primary_10_1002_cssc_202401841 crossref_primary_10_1016_j_est_2024_115152 crossref_primary_10_1002_cssc_202101324 crossref_primary_10_1016_j_jpowsour_2025_237537 crossref_primary_10_1016_j_jpowsour_2025_236208 crossref_primary_10_1098_rsos_210567 crossref_primary_10_1002_anie_202413971 crossref_primary_10_63995_SGCF3012 crossref_primary_10_1002_aenm_202003713 crossref_primary_10_1016_j_cej_2023_147305 crossref_primary_10_3390_molecules27206805 crossref_primary_10_1016_j_est_2025_116785 crossref_primary_10_1002_ange_202409421 crossref_primary_10_1016_j_jelechem_2023_117251 crossref_primary_10_1002_ange_202304036 crossref_primary_10_1016_j_pmatsci_2021_100911 crossref_primary_10_1002_batt_202200431 crossref_primary_10_1016_j_jelechem_2021_115737 crossref_primary_10_1002_aesr_202200030 crossref_primary_10_1016_j_jechem_2023_04_018 crossref_primary_10_1002_batt_202200436 crossref_primary_10_1002_adfm_202416000 crossref_primary_10_1039_D2NR02980D crossref_primary_10_1002_aenm_202103010 crossref_primary_10_1038_s41467_023_36792_7 crossref_primary_10_1002_admi_202002161 crossref_primary_10_1016_j_ccr_2020_213650 crossref_primary_10_1016_j_mattod_2023_02_027 crossref_primary_10_1038_s41578_022_00478_1 crossref_primary_10_1016_j_jpowsour_2023_233876 crossref_primary_10_1039_D3RA03187J crossref_primary_10_1002_anie_202403712 crossref_primary_10_1007_s12598_020_01588_x crossref_primary_10_1002_adfm_202409952 crossref_primary_10_1002_cnma_202000384 crossref_primary_10_1039_D2QM00578F crossref_primary_10_1002_ange_202003198 crossref_primary_10_1002_adfm_202311257 crossref_primary_10_1002_inf2_12480 crossref_primary_10_1039_D1QM00015B crossref_primary_10_1002_anie_202304036 crossref_primary_10_3390_ma17235864 crossref_primary_10_1002_ange_202203646 crossref_primary_10_1002_ange_202215864 crossref_primary_10_1016_j_jcis_2023_09_149 crossref_primary_10_1002_ente_202200154 crossref_primary_10_1002_aenm_202401658 crossref_primary_10_1016_j_jcis_2025_137858 crossref_primary_10_1002_adfm_202312332 crossref_primary_10_1002_ange_202413971 crossref_primary_10_1002_ange_202216713 crossref_primary_10_1002_smll_202306406 crossref_primary_10_1016_j_matt_2021_01_022 crossref_primary_10_1016_j_cej_2023_144248 crossref_primary_10_1002_anie_202110373 crossref_primary_10_1016_j_polymer_2022_124658 crossref_primary_10_1007_s11172_022_3634_8 crossref_primary_10_1016_j_cej_2020_125967 crossref_primary_10_1007_s11664_021_09176_0 crossref_primary_10_1016_j_polymer_2024_127244 crossref_primary_10_1002_chem_202401853 crossref_primary_10_1002_anie_202001703 crossref_primary_10_1016_j_jece_2023_110878 crossref_primary_10_1039_D4SC04295F crossref_primary_10_1155_er_6738352 crossref_primary_10_1002_anie_202303162 crossref_primary_10_1016_j_est_2022_106058 crossref_primary_10_1016_j_energy_2024_133981 crossref_primary_10_1016_j_electacta_2022_141449 crossref_primary_10_1016_j_electacta_2022_141206 crossref_primary_10_1002_cphc_202401137 crossref_primary_10_1021_acsanm_5c00990 crossref_primary_10_1016_j_jallcom_2025_181972 crossref_primary_10_1016_j_cclet_2025_111185 crossref_primary_10_1002_ange_202303162 crossref_primary_10_1016_j_colsurfa_2022_130496 crossref_primary_10_1016_j_synthmet_2022_117113 crossref_primary_10_1016_j_nanoen_2024_110085 crossref_primary_10_1016_j_cej_2022_139016 crossref_primary_10_1002_advs_202505936 crossref_primary_10_1002_celc_202400550 crossref_primary_10_26599_NRE_2025_9120159 crossref_primary_10_1134_S1070363224060410 crossref_primary_10_1002_advs_202500484 crossref_primary_10_1002_batt_202200402 crossref_primary_10_1016_j_apmate_2021_10_002 crossref_primary_10_1016_j_jechem_2020_05_021 crossref_primary_10_1002_cssc_202101386 crossref_primary_10_1039_D2EE00162D crossref_primary_10_1021_jacs_3c01131 crossref_primary_10_1016_j_jpowsour_2020_228814 crossref_primary_10_1002_anie_202504928 crossref_primary_10_1002_adfm_202420573 crossref_primary_10_1016_j_cattod_2021_09_040 crossref_primary_10_1002_anie_202011144 crossref_primary_10_1016_j_jcis_2022_08_098 crossref_primary_10_1002_anie_202508057 crossref_primary_10_1515_pac_2021_0706 crossref_primary_10_1002_sus2_4 crossref_primary_10_1039_D3QM00850A crossref_primary_10_1002_anie_202216047 crossref_primary_10_1002_anie_202117661 crossref_primary_10_1016_j_isci_2024_111229 crossref_primary_10_1016_j_jelechem_2022_116727 crossref_primary_10_1007_s40843_021_1689_4 crossref_primary_10_1002_cphc_202500422 crossref_primary_10_1039_D0MH01364A crossref_primary_10_1002_cnma_202100294 crossref_primary_10_1002_smll_202406173 crossref_primary_10_1039_D2MH00279E crossref_primary_10_1016_j_matt_2022_09_008 crossref_primary_10_59717_j_xinn_mater_2025_100150 crossref_primary_10_1002_aenm_202403029 crossref_primary_10_1002_aenm_202404116 crossref_primary_10_1016_j_coco_2021_100947 crossref_primary_10_1016_j_optmat_2024_115132 crossref_primary_10_1039_D3QM00501A crossref_primary_10_1002_ange_202403712 crossref_primary_10_1021_jacs_2c00296 crossref_primary_10_1002_aesr_202100165 crossref_primary_10_1016_j_jechem_2020_09_037 crossref_primary_10_1021_jacs_4c17713 crossref_primary_10_1038_s41427_024_00557_5 crossref_primary_10_1002_adfm_202211950 crossref_primary_10_1002_chem_202005259 crossref_primary_10_1016_j_mattod_2021_11_008 crossref_primary_10_1016_j_progpolymsci_2025_102012 crossref_primary_10_1002_aenm_202100381 crossref_primary_10_1002_adfm_202107523 crossref_primary_10_1002_adma_202207245 crossref_primary_10_1002_anie_202409421 crossref_primary_10_1002_app_56140 crossref_primary_10_1039_D3RA04345B crossref_primary_10_1016_j_cej_2024_155289 crossref_primary_10_1021_jacs_3c13113 crossref_primary_10_1039_D3SC06331C crossref_primary_10_1002_aenm_202300442 crossref_primary_10_1016_j_materresbull_2024_112858 crossref_primary_10_1016_j_apsusc_2021_152154 crossref_primary_10_1039_D1EE01812D crossref_primary_10_1002_ange_202317135 crossref_primary_10_1016_j_cej_2022_138773 crossref_primary_10_1039_D5TA05781G crossref_primary_10_1016_j_cej_2024_157457 crossref_primary_10_1016_j_cej_2022_136598 crossref_primary_10_1002_ange_202403775 crossref_primary_10_1002_ange_202416845 crossref_primary_10_1016_j_nanoen_2023_108512 crossref_primary_10_3390_polym15061450 crossref_primary_10_1016_j_mtchem_2025_102677 crossref_primary_10_1016_j_cej_2023_148447 crossref_primary_10_1016_j_nanoen_2022_107130 crossref_primary_10_1016_j_cej_2025_164037 crossref_primary_10_1021_acssuschemeng_5c07991 crossref_primary_10_1021_acscentsci_3c01478 crossref_primary_10_1002_slct_202303953 crossref_primary_10_1002_aenm_202401257 crossref_primary_10_1016_j_est_2024_112006 crossref_primary_10_1016_j_coelec_2021_100745 crossref_primary_10_1002_chem_202101611 crossref_primary_10_1016_j_jpowsour_2023_232963 crossref_primary_10_1007_s12598_023_02596_3 crossref_primary_10_1039_D1EE00419K crossref_primary_10_1007_s12274_022_4995_x crossref_primary_10_1016_j_cej_2021_132704 crossref_primary_10_1038_s41467_021_23521_1 crossref_primary_10_1016_j_jclepro_2023_136246 crossref_primary_10_1007_s11426_025_2593_1 crossref_primary_10_1002_adma_202409521 crossref_primary_10_5796_electrochemistry_25_71018 crossref_primary_10_1002_adfm_202107718 crossref_primary_10_1002_smll_202308881 crossref_primary_10_1002_aenm_202100330 crossref_primary_10_1002_idm2_12070 crossref_primary_10_1038_s41563_023_01518_z crossref_primary_10_1016_j_jpowsour_2022_231361 crossref_primary_10_1002_adfm_202315669 crossref_primary_10_1016_j_jpowsour_2023_232738 crossref_primary_10_1007_s12274_022_4181_1 crossref_primary_10_1002_smll_202005752 crossref_primary_10_1016_j_cej_2023_144068 crossref_primary_10_1002_admi_202300464 crossref_primary_10_1002_ange_202307365 crossref_primary_10_1038_s41467_024_53803_3 crossref_primary_10_1002_ange_202423118 crossref_primary_10_1038_s41563_021_00954_z crossref_primary_10_1016_j_jechem_2020_08_054 crossref_primary_10_1126_scirobotics_adr6125 crossref_primary_10_1002_ange_202317393 crossref_primary_10_1007_s13233_025_00385_8 crossref_primary_10_1007_s12274_023_5871_z crossref_primary_10_1016_j_susmat_2025_e01310 crossref_primary_10_1016_j_matlet_2022_133682 crossref_primary_10_1016_j_jpowsour_2025_238406 crossref_primary_10_1002_anie_202511229 |
| Cites_doi | 10.1039/C7TA09968A 10.1038/507026a 10.1002/aenm.201802151 10.1002/adma.201901808 10.1002/anie.201906844 10.1016/j.jpowsour.2019.04.087 10.1038/s41467-018-07599-8 10.1002/advs.201902129 10.1021/am405470p 10.1038/s41565-019-0371-8 10.1021/cm000511k 10.1149/2.015401jes 10.1149/1.2411755 10.1021/acscentsci.6b00220 10.1038/nmat2372 10.1039/C7TC04645F 10.1021/cr941181o 10.1002/anie.201603897 10.3390/app9183671 10.1002/adma.201705644 10.1038/s41560-018-0108-1 10.1021/jacs.7b06313 10.1016/S1388-2481(03)00121-8 10.1126/sciadv.1500330 10.1038/s41467-018-06708-x 10.1039/c39810000317 10.1002/adma.201800561 10.1038/d41586-018-05752-3 10.1021/acs.chemmater.8b01304 10.1016/j.nanoen.2017.04.055 10.1002/anie.201700148 10.1039/c3ee40709h 10.1021/jacs.7b02648 10.1021/cr5003003 10.1039/c3ta14920j 10.1039/c3sc22093a 10.1002/cssc.201901545 10.1021/jacs.5b00336 10.1021/acs.nanolett.6b00954 10.1002/adma.201703868 10.1016/j.electacta.2011.08.115 10.1002/adfm.201906436 10.1038/nenergy.2016.141 10.1002/anie.201105006 10.1016/0013-4686(72)90010-2 10.1039/C4CC07149B 10.1016/j.joule.2017.08.019 10.1149/1.2086549 10.1002/adma.201901640 10.1002/adma.201502329 10.1021/jz501557n 10.1016/j.nanoen.2019.103949 10.1021/cr020731c 10.1002/advs.201500018 10.1016/j.ensm.2018.06.005 10.1002/adfm.201901730 10.1021/nl2039666 10.1021/jp040552u 10.1021/ja507852t 10.1002/app.28470 10.1038/s41467-018-02889-7 10.1002/anie.201604519 10.1021/acs.chemmater.6b00624 10.1016/S0009-2614(02)00705-4 10.1038/s41560-018-0107-2 10.1246/cl.2011.750 10.1002/aenm.201200947 10.1002/adsu.201600032 10.1016/j.chempr.2018.09.005 10.1002/asia.201800326 10.1021/acs.jpcc.7b04341 10.1149/2.0031514jes 10.1039/C6EE03185D 10.1038/ncomms6335 10.1038/s41560-017-0014-y 10.1002/pat.1990.220010106 10.1016/j.isci.2019.04.010 10.1002/anie.201706604 10.1002/aenm.201703509 10.1016/j.egypro.2016.05.029 10.1002/aenm.201701316 10.1016/j.joule.2018.07.008 10.1021/jacs.7b11272 10.1039/c39770000578 10.1002/anie.201902185 10.1016/j.electacta.2016.10.158 10.1073/pnas.1717892115 10.1007/s11426-018-9410-0 10.1016/j.ensm.2019.05.001 10.1038/s41560-019-0405-3 10.1021/acsami.7b18758 10.1021/acsami.8b06803 10.1002/aenm.201602279 10.1021/acs.accounts.9b00231 10.1021/acs.chemrev.7b00115 10.1016/j.nanoen.2015.10.015 10.1002/cssc.200700161 10.1063/1.438420 10.1002/aenm.201501780 10.1002/adma.201903955 10.1063/1.4898006 10.1038/s41928-018-0048-6 10.1002/anie.201707473 10.1002/anie.201503072 10.1126/science.1151831 10.1021/acssuschemeng.9b01800 10.1021/acssuschemeng.9b02315 10.1039/C8QI00197A 10.1002/adma.200803073 10.1016/j.jpowsour.2007.10.086 10.1038/s41563-018-0215-1 10.1002/adma.201305005 10.1038/s41467-018-03114-1 10.1149/1.2115542 10.1021/cg070386q 10.1002/anie.201109187 10.1002/anie.201805540 10.1016/j.chempr.2017.09.004 10.1002/anie.201903152 10.1073/pnas.1314345110 10.1039/C8SC02995D 10.1016/j.ensm.2019.11.020 10.1002/aenm.201400554 10.1002/marc.201400167 10.1021/jacs.5b02290 10.1021/acs.chemmater.6b00267 10.1038/451652a 10.1039/C9CC05679C 10.1016/j.jallcom.2018.02.048 10.1002/anie.201607194 10.1016/j.jpowsour.2014.12.082 10.1021/am404965p 10.1002/advs.201500124 10.1038/s41560-018-0291-0 10.1002/anie.201302586 10.1007/s12274-017-1580-9 10.1021/acsami.7b18252 10.1149/1.2095460 10.1021/jacs.9b03467 10.1002/smll.201805061 10.1016/j.matlet.2016.04.073 10.1039/C9TA05252F 10.1021/acsami.6b07591 10.1246/bcsj.77.2203 10.1038/nenergy.2017.74 10.1016/j.joule.2017.08.001 10.1021/acs.chemmater.8b01317 10.1002/adma.200602584 10.1016/j.jpowsour.2018.02.039 10.1016/j.nanoen.2014.10.012 10.1039/C8TA07097K 10.1038/natrevmats.2018.13 10.1039/C4CS00218K 10.1002/anie.201601119 10.1039/C8TA05336G 10.1002/anie.201506673 10.1016/j.jechem.2018.06.003 10.1016/S1452-3981(23)18227-7 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2020 2020. Springer Nature Limited. 2020© Springer Nature Limited 2020 Springer Nature Limited 2020. |
| Copyright_xml | – notice: Springer Nature Limited 2020 – notice: 2020. Springer Nature Limited. – notice: 2020© Springer Nature Limited 2020 – notice: Springer Nature Limited 2020. |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1038/s41570-020-0160-9 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2397-3358 |
| EndPage | 142 |
| ExternalDocumentID | 37128020 10_1038_s41570_020_0160_9 |
| Genre | Journal Article Review |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAWYQ AAYZH ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFKRA AFSHS AGSTI AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P M7S NNMJJ O9- ODYON PTHSS RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA AFFHD ATHPR CITATION PHGZM PHGZT PQGLB NPM 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U 7X8 |
| ID | FETCH-LOGICAL-c466t-641b2e912963a8f3399e741cdd58ed47b0c846ebade01c38d2bd2f1f363907393 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1095 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513106500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2397-3358 |
| IngestDate | Thu Sep 04 20:20:46 EDT 2025 Wed Aug 13 06:28:28 EDT 2025 Sat Aug 23 12:37:09 EDT 2025 Wed Feb 19 02:24:27 EST 2025 Tue Nov 18 22:19:43 EST 2025 Sat Nov 29 06:23:17 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2020. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-641b2e912963a8f3399e741cdd58ed47b0c846ebade01c38d2bd2f1f363907393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-2094-1524 0000-0001-8604-9689 |
| PMID | 37128020 |
| PQID | 2377423800 |
| PQPubID | 4669715 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2808587691 proquest_journals_2475007070 proquest_journals_2377423800 pubmed_primary_37128020 crossref_citationtrail_10_1038_s41570_020_0160_9 crossref_primary_10_1038_s41570_020_0160_9 springer_journals_10_1038_s41570_020_0160_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Chemistry |
| PublicationTitleAbbrev | Nat Rev Chem |
| PublicationTitleAlternate | Nat Rev Chem |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Huang (CR121) 2013; 52 Sato (CR18) 2018; 140 Matsunaga, Daifuku, Nakajima, Kawagoe (CR29) 1990; 1 Qin (CR87) 2019; 15 Park (CR162) 2015; 27 Novák, Müller, Santhanam, Haas (CR27) 1997; 97 Dai (CR93) 2019; 16 Han (CR17) 2019; 7 Lei (CR47) 2017; 10 Iordache (CR39) 2016; 8 CR159 Cho, Kim, Park (CR96) 2000; 12 CR157 Li (CR84) 2019; 58 CR158 CR156 Han, Qing, Sun, Sun (CR43) 2012; 51 Lee (CR102) 2014; 26 Song, Qian, Otani, Zhou (CR110) 2016; 6 Zhao (CR131) 2016; 55 Song, Qian, Zhang, Otani, Zhou (CR109) 2015; 2 Ren, Su, Chen (CR152) 2008; 109 Jia, Ge, Shao, Wang, Wallace (CR28) 2019; 7 Kim, Wu, Chun, Whitacre, Bettinger (CR160) 2013; 110 Lu, Zhang, Jahn, Pfleging, Seifert (CR141) 2019; 9 Bhargav, Bell, Karty, Cui, Fu (CR40) 2018; 10 Gu (CR138) 2019; 141 Liu, Zhu, Cui (CR128) 2019; 4 Huang, Yao, Liang, Dai (CR95) 2018; 743 Vizintin (CR62) 2018; 9 Visco, DeJonghe (CR30) 1988; 135 Walter, Kravchyk, Böfer, Widmer, Kovalenko (CR50) 2018; 30 Lei (CR52) 2018; 9 Lu (CR164) 2017; 121 Luo (CR45) 2018; 115 Armand (CR37) 2009; 8 Goodenough (CR1) 2018; 1 Liang (CR133) 2015; 137 Friebe, Lex-Balducci, Schubert (CR13) 2019; 12 Ma, Zhao, Wang, Pan, Chen (CR112) 2016; 55 Wang, Guo, Fu (CR31) 2019; 52 Zhu (CR120) 2014; 136 Miroshnikov (CR19) 2019; 7 Yang (CR130) 2018; 27 Zhang (CR171) 2019; 31 Visco, Liu, Armand, de Jonghe (CR142) 1990; 190 Wu (CR85) 2015; 54 Hansen (CR41) 2018; 10 Song (CR115) 2012; 12 Nishide, Oyaizu (CR161) 2008; 319 Williams, Byrne, Driscoll (CR22) 1969; 116 Luo, Allen, Raju, Ji (CR58) 2014; 4 Luo (CR78) 2018; 57 Li (CR80) 2019; 29 Yoshino (CR3) 2012; 51 Bresser (CR71) 2018; 382 Peng (CR98) 2017; 2 Huang (CR56) 2019 Luo, Liu, Zhao, Li, Chen (CR104) 2017; 56 Cao, Li, Lu, Liu, Amine (CR69) 2019; 14 Wain (CR54) 2005; 109 Dawut, Lu, Miao, Chen (CR49) 2018; 5 Lu (CR38) 2019; 58 Rodríguez-Pérez (CR48) 2017; 139 Yao, Senoh, Sakai, Kiyobayashi (CR100) 2011; 6 Zhang (CR125) 2019; 31 Jia (CR82) 2014; 10 Lin (CR149) 2015; 51 Prabakar (CR51) 2019; 6 Li, Lu, Chen, Amine (CR5) 2018; 30 Chen (CR21) 2008; 1 Wang, Li, Easley, Lutkenhaus (CR14) 2019; 18 Cheng, Zhang, Zhao, Zhang (CR76) 2017; 117 Yao, Ando, Kiyobayashi (CR143) 2016; 89 Lee (CR65) 2017; 2 Wang (CR66) 2017; 56 Van Noorden (CR4) 2014; 507 Cano (CR70) 2018; 3 Sun (CR86) 2016; 55 Sieuw (CR170) 2019; 10 Häupler (CR90) 2014; 35 Xiang (CR36) 2008; 8 Janek, Zeier (CR72) 2016; 1 Liang, Zhang, Chen (CR118) 2013; 4 Zhang (CR154) 2018; 6 Hanyu, Sugimoto, Ganbe, Masuda, Honma (CR144) 2014; 161 Han, Chang, Yuan, Sun, Sun (CR57) 2007; 19 Wu (CR64) 2015; 1 Cai (CR91) 2015; 278 Lee, Park (CR105) 2017; 7 Matsunaga, Kubota, Sugimoto, Satoh (CR42) 2011; 40 Jouhara (CR166) 2018; 9 Alt, Binder, Köhling, Sandstede (CR23) 1972; 17 Acker, Rzesny, Marchiori, Araujo, Esser (CR55) 2019; 29 Kato, Senoo, Yao, Misaki (CR94) 2014; 2 Wu (CR67) 2017; 56 Suga, Ohshiro, Sugita, Oyaizu, Nishide (CR124) 2009; 21 Tobishima, Yamaki, Yamaji (CR32) 1984; 131 Lee, Kim, Park (CR106) 2016; 28 Xie, Zhang (CR15) 2019; 15 Kim (CR20) 2019; 58 Lu, Zhang, Chen (CR79) 2019; 62 Amin (CR163) 2018; 30 Liu, Visco, De Jonghe (CR35) 1990; 137 CR75 CR74 Otteny (CR89) 2018; 8 Luo, Chu, Huang, Sun, Li (CR146) 2014; 3 Lin, Liu, Ai, Liang (CR68) 2018; 9 Ju (CR97) 2014; 6 Mulzer (CR134) 2016; 2 Luo, Fan, Ma, Gao, Wang (CR136) 2017; 3 Zhu, Chen (CR169) 2015; 162 CR6 Jia (CR88) 2019; 64 Duan (CR114) 2016; 221 Whittingham (CR7) 2014; 114 Olivetti, Ceder, Gaustad, Fu (CR11) 2017; 1 Li, Zhan, Zhou (CR153) 2003; 5 Ivory (CR25) 1979; 71 Liang, Zhang, Yang, Tao, Chen (CR99) 2013; 3 CR127 Iordache (CR139) 2017; 1 Song, Zhou (CR53) 2013; 6 Kwon (CR119) 2018; 6 Xie, Wang, Xu, Zhang (CR108) 2018; 8 MacInnes (CR26) 1981; 7 CR81 Teranishi (CR132) 2014; 105 Gu, Bai, Majumder, Huang, Chen (CR147) 2019; 429 Renault (CR44) 2016; 28 Armand, Tarascon (CR12) 2008; 451 CR129 Meng (CR60) 2017; 1 Zhang, Guo, Zhao, Niu, Chen (CR113) 2015; 2 Shirakawa, Louis, MacDiarmid, Chiang, Heeger (CR24) 1977; 16 Lee (CR92) 2019; 20 Zhang (CR150) 2018; 6 Feng, Cao, Ai, Yang (CR151) 2008; 177 Gottis, Barrès, Dolhem, Poizot (CR165) 2014; 6 Whittingham (CR2) 2004; 104 Banda (CR167) 2017; 7 Deng, Zhou (CR83) 2016; 176 Shi (CR116) 2018; 30 Hong (CR101) 2014; 5 Turcheniuk, Bondarev, Singhal, Yushin (CR10) 2018; 559 Chen (CR155) 2019; 31 Ma, Lv, Li (CR145) 2014; 3 Chen (CR59) 2015; 18 Liang, Yao (CR61) 2018; 2 Song (CR111) 2015; 54 Jiang (CR77) 2018; 13 Lakraychi (CR117) 2018; 6 Wang (CR140) 2017; 139 Kim (CR16) 2019; 4 Suga, Pu, Oyaizu, Nishide (CR34) 2004; 77 Schmuch, Wagner, Hörpel, Placke, Winter (CR73) 2018; 3 Kim (CR63) 2014; 5 Zhang (CR8) 2015; 44 Vaalma, Buchholz, Weil, Passerini (CR9) 2018; 3 Wu (CR123) 2016; 55 Nakahara (CR33) 2002; 359 Lu, Zhang, Li, Niu, Chen (CR126) 2018; 4 Wang (CR135) 2016; 16 Kundu (CR137) 2018; 30 Jing, Liang, Gheytani, Yao (CR103) 2017; 37 Zhao, Wang, Chen, Ma, Chen (CR107) 2017; 10 Zhang, Cheng, Shi, Chen, Cheng (CR148) 2018; 10 Wu (CR46) 2019; 55 Wang (CR168) 2015; 137 Senoh, Yao, Sakaebe, Yasuda, Siroma (CR122) 2011; 56 C Luo (160_CR45) 2018; 115 M Kato (160_CR94) 2014; 2 S-i Tobishima (160_CR32) 1984; 131 T Matsunaga (160_CR29) 1990; 1 M Yao (160_CR143) 2016; 89 L Ren (160_CR152) 2008; 109 X Chen (160_CR155) 2019; 31 X Han (160_CR43) 2012; 51 JK Feng (160_CR151) 2008; 177 H Banda (160_CR167) 2017; 7 160_CR6 M Li (160_CR5) 2018; 30 X Han (160_CR57) 2007; 19 Y Liang (160_CR133) 2015; 137 D MacInnes Jr. (160_CR26) 1981; 7 K Nakahara (160_CR33) 2002; 359 W Luo (160_CR58) 2014; 4 C Han (160_CR17) 2019; 7 J Meng (160_CR60) 2017; 1 Y Liang (160_CR99) 2013; 3 H Zhang (160_CR150) 2018; 6 H Alt (160_CR23) 1972; 17 SJ Visco (160_CR142) 1990; 190 P Acker (160_CR55) 2019; 29 X Wu (160_CR64) 2015; 1 T Li (160_CR80) 2019; 29 A Yoshino (160_CR3) 2012; 51 MS Whittingham (160_CR7) 2014; 114 J Kim (160_CR20) 2019; 58 R Van Noorden (160_CR4) 2014; 507 Y Liu (160_CR128) 2019; 4 Z Song (160_CR111) 2015; 54 Y Jing (160_CR103) 2017; 37 K Zhang (160_CR8) 2015; 44 T Matsunaga (160_CR42) 2011; 40 G Dawut (160_CR49) 2018; 5 F Otteny (160_CR89) 2018; 8 H Nishide (160_CR161) 2008; 319 JE Kwon (160_CR119) 2018; 6 H Senoh (160_CR122) 2011; 56 H Kim (160_CR63) 2014; 5 C Luo (160_CR136) 2017; 3 M Armand (160_CR37) 2009; 8 160_CR75 J Wu (160_CR85) 2015; 54 X Lu (160_CR141) 2019; 9 160_CR74 J Hong (160_CR101) 2014; 5 X Jia (160_CR28) 2019; 7 160_CR81 H Jia (160_CR88) 2019; 64 Z Luo (160_CR104) 2017; 56 S Jiang (160_CR77) 2018; 13 C Friebe (160_CR13) 2019; 12 AJ Wain (160_CR54) 2005; 109 J Lee (160_CR106) 2016; 28 H Shirakawa (160_CR24) 1977; 16 K Sato (160_CR18) 2018; 140 Z Song (160_CR109) 2015; 2 G Dai (160_CR93) 2019; 16 M Lee (160_CR65) 2017; 2 J Lee (160_CR105) 2017; 7 Y Liang (160_CR118) 2013; 4 160_CR129 CR Mulzer (160_CR134) 2016; 2 160_CR127 A Iordache (160_CR39) 2016; 8 B Häupler (160_CR90) 2014; 35 S Wang (160_CR14) 2019; 18 M Walter (160_CR50) 2018; 30 S Gottis (160_CR165) 2014; 6 Y Lu (160_CR126) 2018; 4 J Li (160_CR153) 2003; 5 L Zhang (160_CR125) 2019; 31 K Lei (160_CR47) 2017; 10 Y Hanyu (160_CR144) 2014; 161 Z Lei (160_CR52) 2018; 9 M Liu (160_CR35) 1990; 137 Y Shi (160_CR116) 2018; 30 Y Liang (160_CR61) 2018; 2 Y Wu (160_CR46) 2019; 55 M Wu (160_CR123) 2016; 55 W Huang (160_CR56) 2019 Y Chen (160_CR59) 2015; 18 160_CR159 160_CR157 C Wang (160_CR168) 2015; 137 K-A Hansen (160_CR41) 2018; 10 160_CR158 J Xie (160_CR15) 2019; 15 T Deng (160_CR83) 2016; 176 Z Song (160_CR53) 2013; 6 J Cho (160_CR96) 2000; 12 JB Goodenough (160_CR1) 2018; 1 Y Cao (160_CR69) 2019; 14 DJ Kim (160_CR16) 2019; 4 A Yang (160_CR130) 2018; 27 ZP Cano (160_CR70) 2018; 3 J Duan (160_CR114) 2016; 221 T Sun (160_CR86) 2016; 55 160_CR156 T Suga (160_CR124) 2009; 21 K Turcheniuk (160_CR10) 2018; 559 M Armand (160_CR12) 2008; 451 A Iordache (160_CR139) 2017; 1 DI Williams (160_CR22) 1969; 116 Z Song (160_CR110) 2016; 6 Q Zhao (160_CR131) 2016; 55 D Kundu (160_CR137) 2018; 30 X-B Cheng (160_CR76) 2017; 117 D-Y Wang (160_CR31) 2019; 52 MS Whittingham (160_CR2) 2004; 104 S Renault (160_CR44) 2016; 28 SH Ju (160_CR97) 2014; 6 L Zhang (160_CR148) 2018; 10 D Bresser (160_CR71) 2018; 382 AE Lakraychi (160_CR117) 2018; 6 Y Lin (160_CR149) 2015; 51 C Vaalma (160_CR9) 2018; 3 X Wang (160_CR66) 2017; 56 YJ Kim (160_CR160) 2013; 110 A Jouhara (160_CR166) 2018; 9 F Luo (160_CR146) 2014; 3 R Schmuch (160_CR73) 2018; 3 Z Zhu (160_CR120) 2014; 136 L Sieuw (160_CR170) 2019; 10 EA Olivetti (160_CR11) 2017; 1 X Wu (160_CR67) 2017; 56 C Ma (160_CR145) 2014; 3 K Amin (160_CR163) 2018; 30 X Huang (160_CR95) 2018; 743 T Teranishi (160_CR132) 2014; 105 T Ma (160_CR112) 2016; 55 W Huang (160_CR121) 2013; 52 A Vizintin (160_CR62) 2018; 9 M Miroshnikov (160_CR19) 2019; 7 Z Zhu (160_CR169) 2015; 162 SJR Prabakar (160_CR51) 2019; 6 IA Rodríguez-Pérez (160_CR48) 2017; 139 H Chen (160_CR21) 2008; 1 T Suga (160_CR34) 2004; 77 Q Zhao (160_CR107) 2017; 10 X Jia (160_CR82) 2014; 10 Z Song (160_CR115) 2012; 12 J Zhang (160_CR171) 2019; 31 J Janek (160_CR72) 2016; 1 G Li (160_CR84) 2019; 58 P Novák (160_CR27) 1997; 97 Y Lu (160_CR38) 2019; 58 M Lee (160_CR102) 2014; 26 Y Lu (160_CR164) 2017; 121 Y Lu (160_CR79) 2019; 62 Z Luo (160_CR78) 2018; 57 J Xie (160_CR108) 2018; 8 Y Zhang (160_CR154) 2018; 6 DM Ivory (160_CR25) 1979; 71 S Lee (160_CR92) 2019; 20 K Zhang (160_CR113) 2015; 2 Y Cai (160_CR91) 2015; 278 C Peng (160_CR98) 2017; 2 M Yao (160_CR100) 2011; 6 Y Wang (160_CR135) 2016; 16 M Park (160_CR162) 2015; 27 S Gu (160_CR138) 2019; 141 Z Lin (160_CR68) 2018; 9 J Qin (160_CR87) 2019; 15 SJ Visco (160_CR30) 1988; 135 S Gu (160_CR147) 2019; 429 S Wang (160_CR140) 2017; 139 A Bhargav (160_CR40) 2018; 10 J Xiang (160_CR36) 2008; 8 |
| References_xml | – volume: 6 start-page: 3134 year: 2018 end-page: 3140 ident: CR119 article-title: Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09968A – volume: 507 start-page: 26 year: 2014 end-page: 28 ident: CR4 article-title: The rechargeable revolution: a better battery publication-title: Nature doi: 10.1038/507026a – ident: CR74 – volume: 8 start-page: 1802151 year: 2018 ident: CR89 article-title: Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802151 – volume: 31 start-page: 1901808 year: 2019 ident: CR171 article-title: Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement publication-title: Adv. Mater. doi: 10.1002/adma.201901808 – volume: 58 start-page: 16764 year: 2019 end-page: 16769 ident: CR20 article-title: Biological nicotinamide cofactor as a redox-active motif for reversible electrochemical energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906844 – volume: 429 start-page: 22 year: 2019 end-page: 29 ident: CR147 article-title: Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.087 – ident: CR158 – volume: 9 year: 2018 ident: CR68 article-title: Aligning academia and industry for unified battery performance metrics publication-title: Nat. Commun. doi: 10.1038/s41467-018-07599-8 – volume: 6 start-page: 1902129 year: 2019 ident: CR51 article-title: Graphite as a long-life Ca -intercalation anode and its implementation for rocking-chair type calcium-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201902129 – volume: 6 start-page: 10870 year: 2014 end-page: 10876 ident: CR165 article-title: Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405470p – volume: 14 start-page: 200 year: 2019 end-page: 207 ident: CR69 article-title: Bridging the academic and industrial metrics for next-generation practical batteries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0371-8 – volume: 12 start-page: 3788 year: 2000 end-page: 3791 ident: CR96 article-title: Novel LiCoO cathode material with Al O coating for a Li ion cell publication-title: Chem. Mater. doi: 10.1021/cm000511k – volume: 161 start-page: A6 year: 2014 end-page: A9 ident: CR144 article-title: Multielectron redox compounds for organic cathode quasi-solid state lithium battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.015401jes – volume: 116 start-page: 2 year: 1969 end-page: 4 ident: CR22 article-title: A high energy density lithium/dichloroisocyanuric acid battery system publication-title: J. Electrochem. Soc. doi: 10.1149/1.2411755 – volume: 2 start-page: 667 year: 2016 end-page: 673 ident: CR134 article-title: Superior charge storage and power density of a conducting polymer-modified covalent organic framework publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00220 – volume: 8 start-page: 120 year: 2009 end-page: 125 ident: CR37 article-title: Conjugated dicarboxylate anodes for Li-ion batteries publication-title: Nat. Mater. doi: 10.1038/nmat2372 – volume: 6 start-page: 111 year: 2018 end-page: 118 ident: CR154 article-title: Impact of the synthesis method on the solid-state charge transport of radical polymers publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04645F – volume: 97 start-page: 207 year: 1997 end-page: 282 ident: CR27 article-title: Electrochemically active polymers for rechargeable batteries publication-title: Chem. Rev. doi: 10.1021/cr941181o – volume: 55 start-page: 10027 year: 2016 end-page: 10031 ident: CR123 article-title: Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603897 – volume: 9 start-page: 3671 year: 2019 ident: CR141 article-title: Improved capacity retention of SiO -coated LiNi Mn Co O cathode material for lithium-ion batteries publication-title: Appl. Sci. doi: 10.3390/app9183671 – volume: 30 start-page: 1705644 year: 2018 ident: CR50 article-title: Polypyrenes as high-performance cathode materials for aluminum batteries publication-title: Adv. Mater. doi: 10.1002/adma.201705644 – volume: 3 start-page: 279 year: 2018 end-page: 289 ident: CR70 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 139 start-page: 13031 year: 2017 end-page: 13037 ident: CR48 article-title: Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06313 – volume: 5 start-page: 555 year: 2003 end-page: 560 ident: CR153 article-title: Synthesis and electrochemical properties of polypyrrole-coated poly(2,5-dimercapto-1,3,4-thiadiazole) publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00121-8 – ident: CR129 – volume: 1 year: 2015 ident: CR64 article-title: Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries publication-title: Sci. Adv. doi: 10.1126/sciadv.1500330 – volume: 9 year: 2018 ident: CR166 article-title: Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution publication-title: Nat. Commun. doi: 10.1038/s41467-018-06708-x – volume: 7 start-page: 317 year: 1981 end-page: 319 ident: CR26 article-title: Organic batteries: reversible - and -type electrochemical doping of polyacetylene, (CH) publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39810000317 – volume: 30 start-page: 1800561 year: 2018 ident: CR5 article-title: 30 years of lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 559 start-page: 467 year: 2018 end-page: 470 ident: CR10 article-title: Ten years left to redesign lithium-ion batteries publication-title: Nature doi: 10.1038/d41586-018-05752-3 – volume: 30 start-page: 3508 year: 2018 end-page: 3517 ident: CR116 article-title: Understanding the electrochemical properties of naphthalene diimide: implication for stable and high-rate lithium-ion battery electrodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01304 – volume: 37 start-page: 46 year: 2017 end-page: 52 ident: CR103 article-title: Cross-conjugated oligomeric quinones for high performance organic batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.055 – volume: 56 start-page: 2909 year: 2017 end-page: 2913 ident: CR66 article-title: Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700148 – volume: 6 start-page: 2280 year: 2013 end-page: 2301 ident: CR53 article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40709h – volume: 139 start-page: 4258 year: 2017 end-page: 4261 ident: CR140 article-title: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 114 start-page: 11414 year: 2014 end-page: 11443 ident: CR7 article-title: Ultimate limits to intercalation reactions for lithium batteries publication-title: Chem. Rev. doi: 10.1021/cr5003003 – volume: 2 start-page: 6747 year: 2014 end-page: 6754 ident: CR94 article-title: A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4-diylidenes: a new positive electrode material for rechargeable batteries utilizing ten electron redox publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14920j – volume: 4 start-page: 1330 year: 2013 end-page: 1337 ident: CR118 article-title: Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries publication-title: Chem. Sci. doi: 10.1039/c3sc22093a – volume: 12 start-page: 4093 year: 2019 end-page: 4115 ident: CR13 article-title: Sustainable energy storage: recent trends and developments toward fully organic batteries publication-title: ChemSusChem doi: 10.1002/cssc.201901545 – volume: 137 start-page: 3124 year: 2015 end-page: 3130 ident: CR168 article-title: Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00336 – volume: 16 start-page: 3329 year: 2016 end-page: 3334 ident: CR135 article-title: Understanding the size-dependent sodium storage properties of Na C O -based organic electrodes for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00954 – volume: 30 start-page: 1703868 year: 2018 ident: CR163 article-title: A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201703868 – volume: 56 start-page: 10145 year: 2011 end-page: 10150 ident: CR122 article-title: A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.115 – volume: 29 start-page: 1906436 year: 2019 ident: CR55 article-title: π-Conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906436 – volume: 1 start-page: 16141 year: 2016 ident: CR72 article-title: A solid future for battery development publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 51 start-page: 5798 year: 2012 end-page: 5800 ident: CR3 article-title: The birth of the lithium-ion battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201105006 – volume: 17 start-page: 873 year: 1972 end-page: 887 ident: CR23 article-title: Investigation into the use of quinone compounds for battery cathodes publication-title: Electrochim. Acta doi: 10.1016/0013-4686(72)90010-2 – volume: 51 start-page: 697 year: 2015 end-page: 699 ident: CR149 article-title: An exceptionally stable functionalized metal–organic framework for lithium storage publication-title: Chem. Commun. doi: 10.1039/C4CC07149B – volume: 1 start-page: 229 year: 2017 end-page: 243 ident: CR11 article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals publication-title: Joule doi: 10.1016/j.joule.2017.08.019 – volume: 137 start-page: 750 year: 1990 end-page: 759 ident: CR35 article-title: Electrode kinetics of organodisulfide cathodes for storage batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086549 – volume: 31 start-page: 1901640 year: 2019 ident: CR155 article-title: High-lithium-affinity chemically exfoliated 2D covalent organic frameworks publication-title: Adv. Mater. doi: 10.1002/adma.201901640 – volume: 27 start-page: 5141 year: 2015 end-page: 5146 ident: CR162 article-title: Organic-catholyte-containing flexible rechargeable lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.201502329 – volume: 5 start-page: 3086 year: 2014 end-page: 3092 ident: CR63 article-title: The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li C O , using combined experimental and first principle studies publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501557n – volume: 64 start-page: 103949 year: 2019 ident: CR88 article-title: Core-shell nanostructured organic redox polymer cathodes with superior performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103949 – volume: 104 start-page: 4271 year: 2004 end-page: 4302 ident: CR2 article-title: Lithium batteries and cathode materials publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 2 start-page: 1500018 year: 2015 ident: CR113 article-title: High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode publication-title: Adv. Sci. doi: 10.1002/advs.201500018 – ident: CR156 – volume: 16 start-page: 236 year: 2019 end-page: 242 ident: CR93 article-title: Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.005 – volume: 29 start-page: 1901730 year: 2019 ident: CR80 article-title: A comprehensive understanding of lithium–sulfur battery technology publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901730 – volume: 12 start-page: 2205 year: 2012 end-page: 2211 ident: CR115 article-title: Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries publication-title: Nano Lett. doi: 10.1021/nl2039666 – volume: 109 start-page: 3971 year: 2005 end-page: 3978 ident: CR54 article-title: Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes publication-title: J. Phys. Chem. B doi: 10.1021/jp040552u – ident: CR6 – volume: 136 start-page: 16461 year: 2014 end-page: 16464 ident: CR120 article-title: All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507852t – volume: 109 start-page: 3458 year: 2008 end-page: 3460 ident: CR152 article-title: Influence of DC conductivity of PPy anode on Li/PPy secondary batteries publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28470 – volume: 9 year: 2018 ident: CR52 article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-018-02889-7 – volume: 55 start-page: 10662 year: 2016 end-page: 10666 ident: CR86 article-title: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604519 – volume: 28 start-page: 2408 year: 2016 end-page: 2416 ident: CR106 article-title: Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00624 – volume: 359 start-page: 351 year: 2002 end-page: 354 ident: CR33 article-title: Rechargeable batteries with organic radical cathodes publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00705-4 – volume: 3 start-page: 267 year: 2018 end-page: 278 ident: CR73 article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 3 start-page: 146 year: 2014 end-page: 163 ident: CR146 article-title: Fundamental scientific aspects of lithium batteries (VIII) — anode electrode materials publication-title: Energy Storage Sci. Technol. – volume: 40 start-page: 750 year: 2011 end-page: 752 ident: CR42 article-title: High-performance lithium secondary batteries using cathode active materials of triquinoxalinylenes exhibiting six electron migration publication-title: Chem. Lett. doi: 10.1246/cl.2011.750 – volume: 3 start-page: 600 year: 2013 end-page: 605 ident: CR99 article-title: Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200947 – volume: 3 start-page: 53 year: 2014 end-page: 65 ident: CR145 article-title: Fundamental scientific aspects of lithium batteries (VII) — positive electrode materials publication-title: Energy Storage Sci. Technol. – volume: 1 start-page: 1600032 year: 2017 ident: CR139 article-title: From an enhanced understanding to commercially viable electrodes: the case of PTCLi as sustainable organic lithium-ion anode material publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201600032 – volume: 4 start-page: 2786 year: 2018 end-page: 2813 ident: CR126 article-title: Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries publication-title: Chem doi: 10.1016/j.chempr.2018.09.005 – volume: 13 start-page: 1379 year: 2018 end-page: 1385 ident: CR77 article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium–sulfur batteries publication-title: Chem. Asian J. doi: 10.1002/asia.201800326 – volume: 121 start-page: 14498 year: 2017 end-page: 14506 ident: CR164 article-title: Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04341 – volume: 162 start-page: A2393 year: 2015 end-page: A2405 ident: CR169 article-title: Review — advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0031514jes – volume: 10 start-page: 552 year: 2017 end-page: 557 ident: CR47 article-title: High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03185D – volume: 5 year: 2014 ident: CR101 article-title: Biologically inspired pteridine redox centres for rechargeable batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6335 – ident: CR159 – volume: 2 start-page: 861 year: 2017 end-page: 868 ident: CR65 article-title: High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate publication-title: Nat. Energy doi: 10.1038/s41560-017-0014-y – volume: 1 start-page: 33 year: 1990 end-page: 39 ident: CR29 article-title: Development of polyaniline–lithium secondary battery publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1990.220010106 – volume: 15 start-page: 16 year: 2019 end-page: 27 ident: CR87 article-title: A metal-free battery with pure ionic liquid electrolyte publication-title: iScience doi: 10.1016/j.isci.2019.04.010 – volume: 56 start-page: 12561 year: 2017 end-page: 12565 ident: CR104 article-title: An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706604 – volume: 8 start-page: 1703509 year: 2018 ident: CR108 article-title: Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703509 – volume: 89 start-page: 222 year: 2016 end-page: 230 ident: CR143 article-title: Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.05.029 – volume: 7 start-page: 1701316 year: 2017 ident: CR167 article-title: Twisted perylene diimides with tunable redox properties for organic sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701316 – volume: 2 start-page: 1690 year: 2018 end-page: 1706 ident: CR61 article-title: Positioning organic electrode materials in the battery landscape publication-title: Joule doi: 10.1016/j.joule.2018.07.008 – volume: 140 start-page: 1049 year: 2018 end-page: 1056 ident: CR18 article-title: Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11272 – volume: 16 start-page: 578 year: 1977 end-page: 580 ident: CR24 article-title: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39770000578 – volume: 58 start-page: 7020 year: 2019 end-page: 7024 ident: CR38 article-title: Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902185 – volume: 221 start-page: 14 year: 2016 end-page: 22 ident: CR114 article-title: Enhanced electrochemical performance and thermal stability of LiNi Co Al O via nano-sized LiMnPO coating publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.158 – volume: 115 start-page: 2004 year: 2018 end-page: 2009 ident: CR45 article-title: Azo compounds as a family of organic electrode materials for alkali-ion batteries publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717892115 – volume: 62 start-page: 533 year: 2019 end-page: 548 ident: CR79 article-title: Recent progress on lithium-ion batteries with high electrochemical performance publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9410-0 – volume: 20 start-page: 462 year: 2019 end-page: 469 ident: CR92 article-title: Charge-transfer complexes for high-power organic rechargeable batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.001 – volume: 4 start-page: 540 year: 2019 end-page: 550 ident: CR128 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 10 start-page: 6398 year: 2018 end-page: 6406 ident: CR148 article-title: Transition-metal triggered high-efficiency lithium ion storage via coordination interactions with redox-active croconate in one-dimensional metal–organic anode materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18758 – volume: 10 start-page: 21084 year: 2018 end-page: 21090 ident: CR40 article-title: A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06803 – volume: 7 start-page: 1602279 year: 2017 ident: CR105 article-title: Tattooing dye as a green electrode material for lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602279 – volume: 52 start-page: 2290 year: 2019 end-page: 2300 ident: CR31 article-title: Organosulfides: an emerging class of cathode materials for rechargeable lithium batteries publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00231 – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: CR76 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 18 start-page: 205 year: 2015 end-page: 211 ident: CR59 article-title: Organic electrode for non-aqueous potassium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.015 – volume: 1 start-page: 348 year: 2008 end-page: 355 ident: CR21 article-title: From biomass to a renewable Li C O organic electrode for sustainable Li-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.200700161 – volume: 71 start-page: 1506 year: 1979 end-page: 1507 ident: CR25 article-title: Highly conducting charge-transfer complexes of poly( -phenylene) publication-title: J. Chem. Phys. doi: 10.1063/1.438420 – volume: 6 start-page: 1501780 year: 2016 ident: CR110 article-title: Stable Li–organic batteries with Nafion-based sandwich-type separators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501780 – volume: 31 start-page: 1903955 year: 2019 ident: CR125 article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201903955 – ident: CR75 – volume: 105 start-page: 143904 year: 2014 ident: CR132 article-title: High-rate performance of ferroelectric BaTiO -coated LiCoO for Li-ion batteries publication-title: Appl. Phys. Lett. doi: 10.1063/1.4898006 – volume: 1 start-page: 204 year: 2018 ident: CR1 article-title: How we made the Li-ion rechargeable battery publication-title: Nat. Electron. doi: 10.1038/s41928-018-0048-6 – volume: 56 start-page: 13026 year: 2017 end-page: 13030 ident: CR67 article-title: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707473 – ident: CR157 – volume: 54 start-page: 7354 year: 2015 end-page: 7358 ident: CR85 article-title: Pushing up lithium storage through nanostructured polyazaacene analogues as anode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503072 – volume: 319 start-page: 737 year: 2008 end-page: 738 ident: CR161 article-title: Toward flexible batteries publication-title: Science doi: 10.1126/science.1151831 – volume: 7 start-page: 13836 year: 2019 end-page: 13844 ident: CR19 article-title: Made from henna! A fast-charging, high-capacity, and recyclable tetrakislawsone cathode material for lithium ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01800 – volume: 7 start-page: 14321 year: 2019 end-page: 14340 ident: CR28 article-title: Tunable conducting polymers: toward sustainable and versatile batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02315 – volume: 5 start-page: 1391 year: 2018 end-page: 1396 ident: CR49 article-title: High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00197A – volume: 21 start-page: 1627 year: 2009 end-page: 1630 ident: CR124 article-title: Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery publication-title: Adv. Mater. doi: 10.1002/adma.200803073 – volume: 177 start-page: 199 year: 2008 end-page: 204 ident: CR151 article-title: Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.086 – volume: 18 start-page: 69 year: 2019 end-page: 75 ident: CR14 article-title: Real-time insight into the doping mechanism of redox-active organic radical polymers publication-title: Nat. Mater. doi: 10.1038/s41563-018-0215-1 – ident: CR81 – volume: 26 start-page: 2558 year: 2014 end-page: 2565 ident: CR102 article-title: Organic nanohybrids for fast and sustainable energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201305005 – volume: 9 year: 2018 ident: CR62 article-title: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-018-03114-1 – volume: 190 start-page: 185 year: 1990 end-page: 195 ident: CR142 article-title: Solid redox polymerization electrodes and their use in all-solid-state batteries publication-title: Mol. Cryst. Liq. Cryst. – volume: 131 start-page: 57 year: 1984 end-page: 63 ident: CR32 article-title: Cathode characteristics of organic electron acceptors for lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115542 – volume: 8 start-page: 280 year: 2008 end-page: 282 ident: CR36 article-title: A novel coordination polymer as positive electrode material for lithium ion battery publication-title: Cryst. Growth Des. doi: 10.1021/cg070386q – volume: 51 start-page: 5147 year: 2012 end-page: 5151 ident: CR43 article-title: How many lithium ions can be inserted onto fused C aromatic ring systems? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201109187 – volume: 57 start-page: 9443 year: 2018 end-page: 9446 ident: CR78 article-title: A microporous covalent–organic framework with abundant accessible carbonyl groups for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805540 – volume: 3 start-page: 1050 year: 2017 end-page: 1062 ident: CR136 article-title: Self-healing chemistry between organic material and binder for stable sodium-ion batteries publication-title: Chem doi: 10.1016/j.chempr.2017.09.004 – volume: 58 start-page: 8468 year: 2019 end-page: 8473 ident: CR84 article-title: Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903152 – volume: 110 start-page: 20912 year: 2013 end-page: 20917 ident: CR160 article-title: Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1314345110 – volume: 10 start-page: 418 year: 2019 end-page: 426 ident: CR170 article-title: A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds publication-title: Chem. Sci. doi: 10.1039/C8SC02995D – year: 2019 ident: CR56 article-title: Synthesis and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.11.020 – volume: 4 start-page: 1400554 year: 2014 ident: CR58 article-title: An organic pigment as a high-performance cathode for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400554 – volume: 35 start-page: 1367 year: 2014 end-page: 1371 ident: CR90 article-title: Poly(exTTF): a novel redox-active polymer as active material for Li-organic batteries publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201400167 – volume: 137 start-page: 4956 year: 2015 end-page: 4959 ident: CR133 article-title: Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02290 – volume: 28 start-page: 1920 year: 2016 end-page: 1926 ident: CR44 article-title: Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00267 – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: CR12 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 55 start-page: 10856 year: 2019 end-page: 10859 ident: CR46 article-title: A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures publication-title: Chem. Commun. doi: 10.1039/C9CC05679C – volume: 743 start-page: 763 year: 2018 end-page: 772 ident: CR95 article-title: Concentration-controlled morphology of LiFePO crystals with an exposed (100) facet and their enhanced performance for use in lithium-ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.02.048 – volume: 55 start-page: 12528 year: 2016 end-page: 12532 ident: CR131 article-title: Oxocarbon salts for fast rechargeable batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607194 – volume: 6 start-page: 2905 year: 2011 end-page: 2911 ident: CR100 article-title: 5,7,12,14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries publication-title: Int. J. Electrochem. Sci. – volume: 278 start-page: 574 year: 2015 end-page: 581 ident: CR91 article-title: Facile synthesis of LiMn O octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.082 – volume: 6 start-page: 2546 year: 2014 end-page: 2552 ident: CR97 article-title: Improvement of the cycling performance of LiNi Co Mn O cathode active materials by a dual-conductive polymer coating publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404965p – volume: 2 start-page: 1500124 year: 2015 ident: CR109 article-title: Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500124 – volume: 4 start-page: 51 year: 2019 end-page: 59 ident: CR16 article-title: Rechargeable aluminium organic batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0291-0 – volume: 52 start-page: 9162 year: 2013 end-page: 9166 ident: CR121 article-title: Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201302586 – volume: 10 start-page: 4245 year: 2017 end-page: 4255 ident: CR107 article-title: Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1580-9 – volume: 10 start-page: 7982 year: 2018 end-page: 7988 ident: CR41 article-title: New spin on organic radical batteries — an isoindoline nitroxide-based high-voltage cathode material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18252 – volume: 135 start-page: 2905 year: 1988 end-page: 2909 ident: CR30 article-title: Ionic conductivity of organosulfur melts for advanced storage electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2095460 – ident: CR127 – volume: 141 start-page: 9623 year: 2019 end-page: 9628 ident: CR138 article-title: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03467 – volume: 15 start-page: 1805061 year: 2019 ident: CR15 article-title: Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes publication-title: Small doi: 10.1002/smll.201805061 – volume: 176 start-page: 151 year: 2016 end-page: 154 ident: CR83 article-title: Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.073 – volume: 7 start-page: 23378 year: 2019 end-page: 23415 ident: CR17 article-title: Organic quinones towards advanced electrochemical energy storage: recent advances and challenges publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05252F – volume: 8 start-page: 22762 year: 2016 end-page: 22767 ident: CR39 article-title: Perylene-based all-organic redox battery with excellent cycling stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07591 – volume: 77 start-page: 2203 year: 2004 end-page: 2204 ident: CR34 article-title: Electron-transfer kinetics of nitroxide radicals as an electrode-active material publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.77.2203 – volume: 2 start-page: 17074 year: 2017 ident: CR98 article-title: Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes publication-title: Nat. Energy doi: 10.1038/nenergy.2017.74 – volume: 1 start-page: 522 year: 2017 end-page: 547 ident: CR60 article-title: Advances in structure and property optimizations of battery electrode materials publication-title: Joule doi: 10.1016/j.joule.2017.08.001 – volume: 30 start-page: 3874 year: 2018 end-page: 3881 ident: CR137 article-title: Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01317 – volume: 19 start-page: 1616 year: 2007 end-page: 1621 ident: CR57 article-title: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials publication-title: Adv. Mater. doi: 10.1002/adma.200602584 – volume: 382 start-page: 176 year: 2018 end-page: 178 ident: CR71 article-title: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.039 – volume: 10 start-page: 344 year: 2014 end-page: 352 ident: CR82 article-title: Building flexible Li Ti O /CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.012 – volume: 6 start-page: 19182 year: 2018 end-page: 19189 ident: CR117 article-title: An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07097K – volume: 3 start-page: 18013 year: 2018 ident: CR9 article-title: A cost and resource analysis of sodium-ion batteries publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 44 start-page: 699 year: 2015 end-page: 728 ident: CR8 article-title: Nanostructured Mn-based oxides for electrochemical energy storage and conversion publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00218K – volume: 55 start-page: 6428 year: 2016 end-page: 6432 ident: CR112 article-title: A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601119 – volume: 6 start-page: 20564 year: 2018 end-page: 20620 ident: CR150 article-title: Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05336G – volume: 54 start-page: 13947 year: 2015 end-page: 13951 ident: CR111 article-title: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506673 – volume: 27 start-page: 1644 year: 2018 end-page: 1650 ident: CR130 article-title: Core-shell structured 1,4-benzoquinone@TiO cathode for lithium batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.06.003 – volume: 7 start-page: 317 year: 1981 ident: 160_CR26 publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39810000317 – volume: 58 start-page: 7020 year: 2019 ident: 160_CR38 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902185 – volume: 57 start-page: 9443 year: 2018 ident: 160_CR78 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805540 – volume: 30 start-page: 1800561 year: 2018 ident: 160_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 141 start-page: 9623 year: 2019 ident: 160_CR138 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03467 – volume: 17 start-page: 873 year: 1972 ident: 160_CR23 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(72)90010-2 – volume: 7 start-page: 14321 year: 2019 ident: 160_CR28 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02315 – volume: 54 start-page: 7354 year: 2015 ident: 160_CR85 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503072 – volume: 2 start-page: 1500124 year: 2015 ident: 160_CR109 publication-title: Adv. Sci. doi: 10.1002/advs.201500124 – volume: 6 start-page: 19182 year: 2018 ident: 160_CR117 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07097K – volume: 18 start-page: 69 year: 2019 ident: 160_CR14 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0215-1 – volume: 2 start-page: 17074 year: 2017 ident: 160_CR98 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.74 – volume: 278 start-page: 574 year: 2015 ident: 160_CR91 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.082 – volume: 109 start-page: 3971 year: 2005 ident: 160_CR54 publication-title: J. Phys. Chem. B doi: 10.1021/jp040552u – volume: 21 start-page: 1627 year: 2009 ident: 160_CR124 publication-title: Adv. Mater. doi: 10.1002/adma.200803073 – volume: 4 start-page: 1330 year: 2013 ident: 160_CR118 publication-title: Chem. Sci. doi: 10.1039/c3sc22093a – volume: 2 start-page: 1690 year: 2018 ident: 160_CR61 publication-title: Joule doi: 10.1016/j.joule.2018.07.008 – volume: 16 start-page: 578 year: 1977 ident: 160_CR24 publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39770000578 – volume: 1 start-page: 16141 year: 2016 ident: 160_CR72 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 89 start-page: 222 year: 2016 ident: 160_CR143 publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.05.029 – volume: 3 start-page: 1050 year: 2017 ident: 160_CR136 publication-title: Chem doi: 10.1016/j.chempr.2017.09.004 – volume: 9 year: 2018 ident: 160_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03114-1 – volume: 319 start-page: 737 year: 2008 ident: 160_CR161 publication-title: Science doi: 10.1126/science.1151831 – volume: 15 start-page: 1805061 year: 2019 ident: 160_CR15 publication-title: Small doi: 10.1002/smll.201805061 – volume: 12 start-page: 2205 year: 2012 ident: 160_CR115 publication-title: Nano Lett. doi: 10.1021/nl2039666 – volume: 136 start-page: 16461 year: 2014 ident: 160_CR120 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507852t – volume: 28 start-page: 1920 year: 2016 ident: 160_CR44 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00267 – volume: 12 start-page: 3788 year: 2000 ident: 160_CR96 publication-title: Chem. Mater. doi: 10.1021/cm000511k – volume: 162 start-page: A2393 year: 2015 ident: 160_CR169 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0031514jes – year: 2019 ident: 160_CR56 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.11.020 – volume: 6 start-page: 1501780 year: 2016 ident: 160_CR110 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501780 – volume: 104 start-page: 4271 year: 2004 ident: 160_CR2 publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 64 start-page: 103949 year: 2019 ident: 160_CR88 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103949 – volume: 8 start-page: 1703509 year: 2018 ident: 160_CR108 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703509 – volume: 1 start-page: 348 year: 2008 ident: 160_CR21 publication-title: ChemSusChem doi: 10.1002/cssc.200700161 – volume: 9 year: 2018 ident: 160_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02889-7 – ident: 160_CR75 – volume: 3 start-page: 267 year: 2018 ident: 160_CR73 publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 6 start-page: 20564 year: 2018 ident: 160_CR150 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05336G – volume: 35 start-page: 1367 year: 2014 ident: 160_CR90 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201400167 – volume: 161 start-page: A6 year: 2014 ident: 160_CR144 publication-title: J. Electrochem. Soc. doi: 10.1149/2.015401jes – volume: 8 start-page: 22762 year: 2016 ident: 160_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07591 – volume: 743 start-page: 763 year: 2018 ident: 160_CR95 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.02.048 – volume: 10 start-page: 6398 year: 2018 ident: 160_CR148 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18758 – volume: 5 start-page: 1391 year: 2018 ident: 160_CR49 publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00197A – ident: 160_CR81 – volume: 137 start-page: 4956 year: 2015 ident: 160_CR133 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02290 – volume: 3 start-page: 146 year: 2014 ident: 160_CR146 publication-title: Energy Storage Sci. Technol. – ident: 160_CR159 – volume: 10 start-page: 344 year: 2014 ident: 160_CR82 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.012 – volume: 6 start-page: 2546 year: 2014 ident: 160_CR97 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404965p – volume: 71 start-page: 1506 year: 1979 ident: 160_CR25 publication-title: J. Chem. Phys. doi: 10.1063/1.438420 – volume: 30 start-page: 3874 year: 2018 ident: 160_CR137 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01317 – volume: 1 start-page: 229 year: 2017 ident: 160_CR11 publication-title: Joule doi: 10.1016/j.joule.2017.08.019 – volume: 7 start-page: 1701316 year: 2017 ident: 160_CR167 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701316 – volume: 137 start-page: 750 year: 1990 ident: 160_CR35 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086549 – volume: 139 start-page: 13031 year: 2017 ident: 160_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06313 – ident: 160_CR74 – volume: 51 start-page: 697 year: 2015 ident: 160_CR149 publication-title: Chem. Commun. doi: 10.1039/C4CC07149B – volume: 190 start-page: 185 year: 1990 ident: 160_CR142 publication-title: Mol. Cryst. Liq. Cryst. – volume: 115 start-page: 2004 year: 2018 ident: 160_CR45 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717892115 – volume: 6 start-page: 3134 year: 2018 ident: 160_CR119 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09968A – volume: 51 start-page: 5147 year: 2012 ident: 160_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201109187 – volume: 18 start-page: 205 year: 2015 ident: 160_CR59 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.015 – volume: 13 start-page: 1379 year: 2018 ident: 160_CR77 publication-title: Chem. Asian J. doi: 10.1002/asia.201800326 – volume: 429 start-page: 22 year: 2019 ident: 160_CR147 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.087 – volume: 19 start-page: 1616 year: 2007 ident: 160_CR57 publication-title: Adv. Mater. doi: 10.1002/adma.200602584 – volume: 5 start-page: 3086 year: 2014 ident: 160_CR63 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501557n – volume: 559 start-page: 467 year: 2018 ident: 160_CR10 publication-title: Nature doi: 10.1038/d41586-018-05752-3 – volume: 58 start-page: 16764 year: 2019 ident: 160_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906844 – volume: 6 start-page: 10870 year: 2014 ident: 160_CR165 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405470p – volume: 2 start-page: 861 year: 2017 ident: 160_CR65 publication-title: Nat. Energy doi: 10.1038/s41560-017-0014-y – volume: 8 start-page: 1802151 year: 2018 ident: 160_CR89 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802151 – volume: 52 start-page: 9162 year: 2013 ident: 160_CR121 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201302586 – volume: 507 start-page: 26 year: 2014 ident: 160_CR4 publication-title: Nature doi: 10.1038/507026a – volume: 4 start-page: 1400554 year: 2014 ident: 160_CR58 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400554 – volume: 37 start-page: 46 year: 2017 ident: 160_CR103 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.055 – volume: 27 start-page: 5141 year: 2015 ident: 160_CR162 publication-title: Adv. Mater. doi: 10.1002/adma.201502329 – volume: 221 start-page: 14 year: 2016 ident: 160_CR114 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.158 – volume: 8 start-page: 280 year: 2008 ident: 160_CR36 publication-title: Cryst. Growth Des. doi: 10.1021/cg070386q – volume: 7 start-page: 13836 year: 2019 ident: 160_CR19 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01800 – volume: 359 start-page: 351 year: 2002 ident: 160_CR33 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00705-4 – volume: 29 start-page: 1906436 year: 2019 ident: 160_CR55 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906436 – volume: 15 start-page: 16 year: 2019 ident: 160_CR87 publication-title: iScience doi: 10.1016/j.isci.2019.04.010 – volume: 55 start-page: 10027 year: 2016 ident: 160_CR123 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603897 – volume: 6 start-page: 111 year: 2018 ident: 160_CR154 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04645F – volume: 30 start-page: 1703868 year: 2018 ident: 160_CR163 publication-title: Adv. Mater. doi: 10.1002/adma.201703868 – volume: 1 start-page: 204 year: 2018 ident: 160_CR1 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0048-6 – volume: 52 start-page: 2290 year: 2019 ident: 160_CR31 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00231 – volume: 7 start-page: 1602279 year: 2017 ident: 160_CR105 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602279 – volume: 3 start-page: 18013 year: 2018 ident: 160_CR9 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 10 start-page: 21084 year: 2018 ident: 160_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06803 – volume: 9 start-page: 3671 year: 2019 ident: 160_CR141 publication-title: Appl. Sci. doi: 10.3390/app9183671 – volume: 135 start-page: 2905 year: 1988 ident: 160_CR30 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2095460 – volume: 1 start-page: 33 year: 1990 ident: 160_CR29 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1990.220010106 – volume: 55 start-page: 10662 year: 2016 ident: 160_CR86 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604519 – volume: 3 start-page: 53 year: 2014 ident: 160_CR145 publication-title: Energy Storage Sci. Technol. – volume: 56 start-page: 13026 year: 2017 ident: 160_CR67 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707473 – volume: 14 start-page: 200 year: 2019 ident: 160_CR69 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0371-8 – ident: 160_CR157 – volume: 58 start-page: 8468 year: 2019 ident: 160_CR84 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903152 – volume: 137 start-page: 3124 year: 2015 ident: 160_CR168 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00336 – volume: 116 start-page: 2 year: 1969 ident: 160_CR22 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2411755 – ident: 160_CR6 – volume: 29 start-page: 1901730 year: 2019 ident: 160_CR80 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901730 – volume: 31 start-page: 1901640 year: 2019 ident: 160_CR155 publication-title: Adv. Mater. doi: 10.1002/adma.201901640 – volume: 1 start-page: 522 year: 2017 ident: 160_CR60 publication-title: Joule doi: 10.1016/j.joule.2017.08.001 – volume: 1 year: 2015 ident: 160_CR64 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500330 – volume: 117 start-page: 10403 year: 2017 ident: 160_CR76 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 451 start-page: 652 year: 2008 ident: 160_CR12 publication-title: Nature doi: 10.1038/451652a – volume: 140 start-page: 1049 year: 2018 ident: 160_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11272 – volume: 10 start-page: 7982 year: 2018 ident: 160_CR41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18252 – volume: 20 start-page: 462 year: 2019 ident: 160_CR92 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.001 – volume: 4 start-page: 51 year: 2019 ident: 160_CR16 publication-title: Nat. Energy doi: 10.1038/s41560-018-0291-0 – volume: 55 start-page: 6428 year: 2016 ident: 160_CR112 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601119 – volume: 109 start-page: 3458 year: 2008 ident: 160_CR152 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28470 – ident: 160_CR129 – volume: 51 start-page: 5798 year: 2012 ident: 160_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201105006 – volume: 6 start-page: 2280 year: 2013 ident: 160_CR53 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40709h – volume: 62 start-page: 533 year: 2019 ident: 160_CR79 publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9410-0 – ident: 160_CR158 – volume: 77 start-page: 2203 year: 2004 ident: 160_CR34 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.77.2203 – volume: 6 start-page: 2905 year: 2011 ident: 160_CR100 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)18227-7 – volume: 5 start-page: 555 year: 2003 ident: 160_CR153 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00121-8 – volume: 114 start-page: 11414 year: 2014 ident: 160_CR7 publication-title: Chem. Rev. doi: 10.1021/cr5003003 – volume: 6 start-page: 1902129 year: 2019 ident: 160_CR51 publication-title: Adv. Sci. doi: 10.1002/advs.201902129 – volume: 3 start-page: 279 year: 2018 ident: 160_CR70 publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 2 start-page: 1500018 year: 2015 ident: 160_CR113 publication-title: Adv. Sci. doi: 10.1002/advs.201500018 – volume: 139 start-page: 4258 year: 2017 ident: 160_CR140 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 2 start-page: 6747 year: 2014 ident: 160_CR94 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14920j – volume: 1 start-page: 1600032 year: 2017 ident: 160_CR139 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201600032 – volume: 2 start-page: 667 year: 2016 ident: 160_CR134 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00220 – volume: 9 year: 2018 ident: 160_CR166 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06708-x – volume: 16 start-page: 3329 year: 2016 ident: 160_CR135 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00954 – volume: 26 start-page: 2558 year: 2014 ident: 160_CR102 publication-title: Adv. Mater. doi: 10.1002/adma.201305005 – volume: 7 start-page: 23378 year: 2019 ident: 160_CR17 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05252F – volume: 121 start-page: 14498 year: 2017 ident: 160_CR164 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04341 – volume: 4 start-page: 2786 year: 2018 ident: 160_CR126 publication-title: Chem doi: 10.1016/j.chempr.2018.09.005 – volume: 44 start-page: 699 year: 2015 ident: 160_CR8 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00218K – volume: 8 start-page: 120 year: 2009 ident: 160_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat2372 – volume: 16 start-page: 236 year: 2019 ident: 160_CR93 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.005 – volume: 105 start-page: 143904 year: 2014 ident: 160_CR132 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4898006 – volume: 28 start-page: 2408 year: 2016 ident: 160_CR106 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00624 – volume: 3 start-page: 600 year: 2013 ident: 160_CR99 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200947 – volume: 110 start-page: 20912 year: 2013 ident: 160_CR160 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1314345110 – ident: 160_CR127 – volume: 56 start-page: 10145 year: 2011 ident: 160_CR122 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.115 – volume: 31 start-page: 1903955 year: 2019 ident: 160_CR125 publication-title: Adv. Mater. doi: 10.1002/adma.201903955 – volume: 97 start-page: 207 year: 1997 ident: 160_CR27 publication-title: Chem. Rev. doi: 10.1021/cr941181o – volume: 382 start-page: 176 year: 2018 ident: 160_CR71 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.039 – volume: 176 start-page: 151 year: 2016 ident: 160_CR83 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.073 – ident: 160_CR156 – volume: 31 start-page: 1901808 year: 2019 ident: 160_CR171 publication-title: Adv. Mater. doi: 10.1002/adma.201901808 – volume: 30 start-page: 3508 year: 2018 ident: 160_CR116 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01304 – volume: 55 start-page: 10856 year: 2019 ident: 160_CR46 publication-title: Chem. Commun. doi: 10.1039/C9CC05679C – volume: 9 year: 2018 ident: 160_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07599-8 – volume: 27 start-page: 1644 year: 2018 ident: 160_CR130 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.06.003 – volume: 12 start-page: 4093 year: 2019 ident: 160_CR13 publication-title: ChemSusChem doi: 10.1002/cssc.201901545 – volume: 55 start-page: 12528 year: 2016 ident: 160_CR131 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607194 – volume: 177 start-page: 199 year: 2008 ident: 160_CR151 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.086 – volume: 10 start-page: 418 year: 2019 ident: 160_CR170 publication-title: Chem. Sci. doi: 10.1039/C8SC02995D – volume: 4 start-page: 540 year: 2019 ident: 160_CR128 publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 54 start-page: 13947 year: 2015 ident: 160_CR111 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506673 – volume: 56 start-page: 12561 year: 2017 ident: 160_CR104 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706604 – volume: 10 start-page: 4245 year: 2017 ident: 160_CR107 publication-title: Nano Res. doi: 10.1007/s12274-017-1580-9 – volume: 30 start-page: 1705644 year: 2018 ident: 160_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.201705644 – volume: 5 year: 2014 ident: 160_CR101 publication-title: Nat. Commun. doi: 10.1038/ncomms6335 – volume: 56 start-page: 2909 year: 2017 ident: 160_CR66 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700148 – volume: 40 start-page: 750 year: 2011 ident: 160_CR42 publication-title: Chem. Lett. doi: 10.1246/cl.2011.750 – volume: 10 start-page: 552 year: 2017 ident: 160_CR47 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03185D – volume: 131 start-page: 57 year: 1984 ident: 160_CR32 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115542 |
| SSID | ssj0001934979 |
| Score | 2.6428673 |
| SecondaryResourceType | review_article |
| Snippet | Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | 639/638/161 639/638/161/891 639/638/298/923/3931 706/4066/4068 Analytical Chemistry Biochemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Commercialization Electrode materials Electrodes Flux density Gravimetry Inorganic Chemistry Lithium Lithium batteries Optimization Organic Chemistry Organic materials Performance evaluation Physical Chemistry Review Article Sustainability |
| Title | Prospects of organic electrode materials for practical lithium batteries |
| URI | https://link.springer.com/article/10.1038/s41570-020-0160-9 https://www.ncbi.nlm.nih.gov/pubmed/37128020 https://www.proquest.com/docview/2377423800 https://www.proquest.com/docview/2475007070 https://www.proquest.com/docview/2808587691 |
| Volume | 4 |
| WOSCitedRecordID | wos000513106500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2397-3358 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: M7S dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2397-3358 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2397-3358 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001934979 issn: 2397-3358 databaseCode: M2P dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VpYdeChWlDQXkSj2BLBLbieMTAgTi0K5WpUh7i-KXQKIbutnl93ecOIsqHpdeIkV-aOQZez577G8AvinNZXgQSTXulqkQKqN1kUuaC5bmDgFIrTvK_O9yPC6nUzWJB25tvFY5rIndQm0bE87Ij5hA3xa4adLj-z80ZI0K0dWYQmMN1gNTmRjB-un5ePLz8ZRFcaGkGsKZvDxq0WOFXCss3McqUqr-dUhPUOaTCGnneC42_lfkTXgfISc56W3kA7xxsy24nMyb7pVlSxpP-txOhsSkONYRBLK9bRJEtSS-pcJeELXf3C5_E93xcuI2-yNcX5z_OrukMasCNaIoFrQQmWZOoZ8veF16jgjFIaww1uals0Lq1CAmcbq2Ls0MLy3TlvnMc8QyHX_eNoxmzcx9BmK998prn2ljEIjVde2YM5kTLtdOSZtAOgxtZSLleMh8cVd1oW9eVr02KtRGFbRRqQQOVk3ue76N1yrvDgNfxanXVozLEH1GIPx88UopCXxdFeOcCoGSeuaaJdYpEYiim1BZAp96M1gJwyV6dBQhgcPBLh47f1HSnddF-QLvWGeR4W7bLowW86Xbg7fmYXHbzvdhTU7L_Wja-PeDTcJXXv0FPRsARA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXCgJKoICR4AKymtjOw4eqqoBqq25XeyhSbyZ-iZVgUza7IP4Uv5Gxk2yFCr31wNmONcrM-Pvs8cwAvJKalyEhkmo8LVMhZEbrIi9pLliaOyQgtY4l88flZFKdncnpBvwacmHCs8phT4wbtW1MuCPfZQKxLdSmSffPv9HQNSpEV4cWGp1ZHLufP_DI1u4dvUf9vmbs8MPpuxHtuwpQI4piSQuRaeYk4lzB68pzRGiHsGqszStnRalTg5jsdG1dmhleWaYt85nniOWxfhyuewNuCjwJBb86YdOLOx3JhSzlEDzl1W6L-Bg6u7Dw-qtIqfwT_i5x2kvx2Ahzh1v_2w-6B3d7Qk0OOg-4Dxtu_gBG00UTc0hb0njSda4ypG_5Yx1Bmt55HkHOTvpMMVwFzySfZ6uvRMeqozPXPoSP1yL8I9icN3P3GIj13kuvfaaNQZpZ17VjzmROuFw7WdoE0kGVyvQF1UNfjy8qBvZ5pTrtK9S-CtpXMoE360_Ou2oiV03eGRSt-o2lVYyXIbaONP_vw2sjSODlehh3jBAGqueuWeGcCmk2gqDMEtjuzG4tDC-Rr6AICbwd7PBi8X9K-uRqUV7A7dHpyViNjybHT-EOi94QXvHtwOZysXLP4Jb5vpy1i-fRnQh8um7z_A2nGlhX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+organic+electrode+materials+for+practical+lithium+batteries&rft.jtitle=Nature+reviews.+Chemistry&rft.au=Lu%2C+Yong&rft.au=Chen%2C+Jun&rft.date=2020-03-01&rft.eissn=2397-3358&rft.volume=4&rft.issue=3&rft.spage=127&rft_id=info:doi/10.1038%2Fs41570-020-0160-9&rft_id=info%3Apmid%2F37128020&rft.externalDocID=37128020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3358&client=summon |