Prospects of organic electrode materials for practical lithium batteries

Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Chemistry Vol. 4; no. 3; pp. 127 - 142
Main Authors: Lu, Yong, Chen, Jun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Subjects:
ISSN:2397-3358, 2397-3358
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability.
AbstractList Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.
Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability.
Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.
Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability.
Author Lu, Yong
Chen, Jun
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-2094-1524
  surname: Lu
  fullname: Lu, Yong
  organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University
– sequence: 2
  givenname: Jun
  orcidid: 0000-0001-8604-9689
  surname: Chen
  fullname: Chen, Jun
  email: chenabc@nankai.edu.cn
  organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37128020$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUQIMoPucD3EjBjZtqXm2SpYgvGNCFrkOa3mqkbcYkXfj3poyDIigh5BLOudzHAdoe_QgIHRN8TjCTF5GTSuAS03xJjUu1hfYpU6JkrJLbP-I9tIjxDWNMFONKqF20xwShMpv76O4x-LgCm2Lhu8KHFzM6W0Cff4JvoRhMguBMH4vOh2IVjE3Omr7oXXp101A0Js0AxCO002UMFl_vIXq-uX66uiuXD7f3V5fL0vK6TmXNSUNBEapqZmTHmFIgOLFtW0louWiwlbyGxrSAiWWypU1LO9KxmiksmGKH6GyddxX8-wQx6cFFC31vRvBT1LkvWUlRK5LR01_om5_CmKvTlIsKY5HPvxQTglMm8UydfFFTM0CrV8ENJnzozSQzINaAzQONATptXTLJ-TEF43pNsJ7Xptdr01nR89r03BH5ZW6S_-fQtRMzO75A-C76b-kTgT-m1A
CitedBy_id crossref_primary_10_1002_anie_202116289
crossref_primary_10_1016_j_cej_2023_142434
crossref_primary_10_1002_ange_202403331
crossref_primary_10_1002_anie_202106238
crossref_primary_10_1016_j_pmatsci_2025_101543
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1016_j_ensm_2025_104539
crossref_primary_10_1016_j_ijhydene_2022_01_146
crossref_primary_10_1016_j_jelechem_2023_117714
crossref_primary_10_1002_smm2_1110
crossref_primary_10_1016_j_est_2025_118393
crossref_primary_10_1002_smll_202502029
crossref_primary_10_1149_1945_7111_ad4b5f
crossref_primary_10_1002_ange_202506466
crossref_primary_10_1016_j_cej_2023_141335
crossref_primary_10_1002_ange_202424025
crossref_primary_10_3390_nano11123259
crossref_primary_10_1016_j_est_2022_105471
crossref_primary_10_1016_j_jpowsour_2023_234033
crossref_primary_10_1038_s41570_024_00597_z
crossref_primary_10_1002_adfm_202111043
crossref_primary_10_1016_j_inoche_2023_111511
crossref_primary_10_6023_A25030076
crossref_primary_10_1016_j_jpowsour_2024_234521
crossref_primary_10_1002_adfm_202505986
crossref_primary_10_1002_ange_202117661
crossref_primary_10_1007_s11426_024_2163_1
crossref_primary_10_1016_j_cej_2020_127454
crossref_primary_10_1002_adma_202106079
crossref_primary_10_1038_s41557_025_01899_5
crossref_primary_10_1002_adma_202203605
crossref_primary_10_1016_j_jallcom_2022_168505
crossref_primary_10_1002_ange_202209642
crossref_primary_10_1016_j_cej_2023_142658
crossref_primary_10_1002_aenm_202400702
crossref_primary_10_1016_j_apcatb_2024_124507
crossref_primary_10_1016_j_cej_2024_153833
crossref_primary_10_1002_ange_202507570
crossref_primary_10_3390_ijms24021067
crossref_primary_10_1002_smll_202103885
crossref_primary_10_1039_D4EE02777A
crossref_primary_10_1038_s41598_022_07853_6
crossref_primary_10_1002_anie_202312172
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_1002_anie_202302539
crossref_primary_10_1016_j_jcis_2024_01_033
crossref_primary_10_1016_j_nanoen_2021_105792
crossref_primary_10_1002_adma_202406106
crossref_primary_10_1002_anie_202421928
crossref_primary_10_1002_aenm_202403164
crossref_primary_10_1002_celc_202500099
crossref_primary_10_1016_j_compositesb_2022_110301
crossref_primary_10_1002_anie_202016875
crossref_primary_10_1016_j_coco_2021_101019
crossref_primary_10_1007_s12598_023_02358_1
crossref_primary_10_1016_j_jpcs_2025_112980
crossref_primary_10_1002_adfm_202423533
crossref_primary_10_1016_j_cej_2024_158492
crossref_primary_10_1002_smtd_202200455
crossref_primary_10_1002_advs_202302490
crossref_primary_10_1002_batt_202400607
crossref_primary_10_1002_anie_202302754
crossref_primary_10_1016_j_partic_2020_09_004
crossref_primary_10_1002_marc_202401121
crossref_primary_10_1007_s12274_023_6401_8
crossref_primary_10_1021_acs_energyfuels_5c01729
crossref_primary_10_1002_ange_202115046
crossref_primary_10_1016_j_ensm_2025_104328
crossref_primary_10_1016_j_nanoen_2024_110534
crossref_primary_10_1002_advs_202500906
crossref_primary_10_1002_aenm_202201347
crossref_primary_10_20517_cs_2024_14
crossref_primary_10_1002_smll_202405974
crossref_primary_10_1002_cplu_202300620
crossref_primary_10_1002_aenm_202203532
crossref_primary_10_1002_cssc_202301586
crossref_primary_10_1002_ange_202107216
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_1002_ange_202512956
crossref_primary_10_1002_anie_202115180
crossref_primary_10_1002_batt_202200197
crossref_primary_10_1016_j_nanoen_2024_110520
crossref_primary_10_1021_jacs_2c07575
crossref_primary_10_1039_D4CP04811C
crossref_primary_10_1016_j_cej_2024_150527
crossref_primary_10_1038_s44359_025_00079_5
crossref_primary_10_1002_smtd_202300687
crossref_primary_10_1021_jacs_3c12358
crossref_primary_10_1016_j_cej_2023_141997
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1016_j_colsurfa_2022_129707
crossref_primary_10_3390_polym15183728
crossref_primary_10_1016_j_jpowsour_2021_230363
crossref_primary_10_1002_aenm_202203540
crossref_primary_10_1038_s41467_021_24701_9
crossref_primary_10_1002_adfm_202209848
crossref_primary_10_1016_j_cej_2025_166152
crossref_primary_10_1016_j_cej_2023_147293
crossref_primary_10_1016_j_jcis_2024_07_170
crossref_primary_10_1039_D1MH00128K
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1002_sus2_180
crossref_primary_10_1016_j_cej_2022_138052
crossref_primary_10_1088_1674_4926_41_9_091704
crossref_primary_10_1002_advs_202310239
crossref_primary_10_1002_admi_202200133
crossref_primary_10_1002_sus2_67
crossref_primary_10_1002_anie_202003198
crossref_primary_10_1016_j_mtchem_2023_101379
crossref_primary_10_3390_molecules28247993
crossref_primary_10_1002_adfm_202401367
crossref_primary_10_1002_smsc_202200101
crossref_primary_10_1002_chem_202202915
crossref_primary_10_1002_adfm_202400032
crossref_primary_10_1039_D1MH00672J
crossref_primary_10_1039_D3EE02897F
crossref_primary_10_1002_slct_202400538
crossref_primary_10_1016_j_mtchem_2022_101082
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_3390_cryst15010031
crossref_primary_10_1002_anie_202301629
crossref_primary_10_1039_D2EE00566B
crossref_primary_10_1039_D5TA02210J
crossref_primary_10_1007_s12633_021_01269_z
crossref_primary_10_1002_cssc_202100872
crossref_primary_10_1016_j_cjche_2024_11_018
crossref_primary_10_1016_j_electacta_2022_141082
crossref_primary_10_1002_advs_202205069
crossref_primary_10_1016_j_electacta_2023_143302
crossref_primary_10_1021_acs_jcim_5c00291
crossref_primary_10_1093_nsr_nwae146
crossref_primary_10_1039_D1SE01649K
crossref_primary_10_1002_advs_202301993
crossref_primary_10_1038_s41524_025_01590_w
crossref_primary_10_1002_anie_202203646
crossref_primary_10_1002_adfm_202214304
crossref_primary_10_1002_cssc_202500753
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1016_j_est_2025_117248
crossref_primary_10_1002_ange_202011482
crossref_primary_10_1016_j_mtsust_2024_100899
crossref_primary_10_1016_j_est_2024_112984
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1039_D3RA06060H
crossref_primary_10_1016_j_jpowsour_2021_230963
crossref_primary_10_1016_j_jpowsour_2021_230722
crossref_primary_10_1007_s10800_023_01964_2
crossref_primary_10_1002_anie_202215864
crossref_primary_10_1002_anie_202216713
crossref_primary_10_1038_s41467_023_40969_5
crossref_primary_10_1002_ente_202101072
crossref_primary_10_1007_s11426_023_1654_5
crossref_primary_10_1016_j_cej_2023_141386
crossref_primary_10_1039_D4SC07932A
crossref_primary_10_1021_jacs_2c08273
crossref_primary_10_1002_adfm_202100505
crossref_primary_10_1002_adsc_202301395
crossref_primary_10_1016_j_ccr_2022_214772
crossref_primary_10_1002_slct_202200300
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1002_ange_202002773
crossref_primary_10_1016_j_cclet_2023_108715
crossref_primary_10_3390_ijms26083838
crossref_primary_10_1002_smll_202105825
crossref_primary_10_1016_j_seppur_2025_133132
crossref_primary_10_1002_cssc_202202159
crossref_primary_10_3390_coatings12121912
crossref_primary_10_1002_ange_202504928
crossref_primary_10_1016_j_cej_2023_143316
crossref_primary_10_1002_smll_202312237
crossref_primary_10_1016_j_cej_2025_162419
crossref_primary_10_1002_adfm_202411362
crossref_primary_10_1002_ange_202207043
crossref_primary_10_1002_adfm_202411127
crossref_primary_10_1002_ange_202508057
crossref_primary_10_1002_smll_202305701
crossref_primary_10_1016_j_apsusc_2024_159920
crossref_primary_10_1016_j_cej_2023_143787
crossref_primary_10_1016_j_jcis_2025_137327
crossref_primary_10_1002_eom2_12178
crossref_primary_10_1002_aenm_202501494
crossref_primary_10_1002_ange_202406465
crossref_primary_10_3390_su142316001
crossref_primary_10_1002_anie_202503067
crossref_primary_10_1002_ange_202511229
crossref_primary_10_1016_j_electacta_2021_138826
crossref_primary_10_1002_batt_202200110
crossref_primary_10_1002_aenm_202001445
crossref_primary_10_1016_j_materresbull_2025_113775
crossref_primary_10_1002_cssc_202301725
crossref_primary_10_1002_cssc_202402231
crossref_primary_10_1016_j_cej_2025_161788
crossref_primary_10_1002_aenm_202002780
crossref_primary_10_1002_aenm_202500150
crossref_primary_10_1002_aenm_202002523
crossref_primary_10_1007_s41918_025_00250_3
crossref_primary_10_1002_advs_202103773
crossref_primary_10_1002_aenm_202102498
crossref_primary_10_1007_s11426_023_1969_3
crossref_primary_10_1002_smll_202405118
crossref_primary_10_1039_D0QI01104E
crossref_primary_10_3390_ma16206687
crossref_primary_10_1016_j_jechem_2024_07_062
crossref_primary_10_1002_smll_202004369
crossref_primary_10_1016_j_est_2024_115026
crossref_primary_10_1016_j_jpowsour_2022_232110
crossref_primary_10_1002_anie_202317393
crossref_primary_10_1002_marc_202000725
crossref_primary_10_1073_pnas_2116775119
crossref_primary_10_1002_cssc_202401975
crossref_primary_10_1002_wcms_1660
crossref_primary_10_1039_D2SC04676H
crossref_primary_10_1016_j_apsusc_2022_152580
crossref_primary_10_1002_batt_202300001
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1021_jacs_3c08711
crossref_primary_10_1002_adfm_202402178
crossref_primary_10_1016_j_cej_2025_166537
crossref_primary_10_1002_adfm_202108798
crossref_primary_10_1007_s40843_023_2545_y
crossref_primary_10_1039_D4SC07400A
crossref_primary_10_1002_ange_202217710
crossref_primary_10_1002_slct_202201683
crossref_primary_10_1021_jacs_4c11663
crossref_primary_10_3390_polym15132920
crossref_primary_10_1016_j_cclet_2022_108095
crossref_primary_10_1016_j_jechem_2022_03_052
crossref_primary_10_1002_adfm_202110871
crossref_primary_10_1002_anie_202307365
crossref_primary_10_1016_j_jpowsour_2023_233737
crossref_primary_10_1016_j_jpowsour_2020_228515
crossref_primary_10_1002_advs_202401314
crossref_primary_10_1002_aenm_202001658
crossref_primary_10_1016_j_jechem_2024_06_030
crossref_primary_10_1016_j_jpowsour_2022_231291
crossref_primary_10_1002_eem2_70093
crossref_primary_10_1016_j_electacta_2023_142735
crossref_primary_10_1002_anie_202511399
crossref_primary_10_1038_s41578_024_00657_2
crossref_primary_10_1002_smll_202303432
crossref_primary_10_1016_j_cej_2023_148503
crossref_primary_10_1016_j_mtener_2021_100812
crossref_primary_10_1016_j_electacta_2024_145234
crossref_primary_10_1002_macp_202400387
crossref_primary_10_1002_adfm_202402199
crossref_primary_10_1016_j_jpowsour_2025_236794
crossref_primary_10_1002_smll_202200463
crossref_primary_10_1016_j_cej_2022_139576
crossref_primary_10_1016_j_cej_2022_139570
crossref_primary_10_1016_j_cej_2024_148806
crossref_primary_10_1016_j_jpowsour_2022_231041
crossref_primary_10_1016_j_jechem_2025_02_051
crossref_primary_10_1002_adfm_202210343
crossref_primary_10_1002_anie_202420160
crossref_primary_10_1016_j_cej_2024_158831
crossref_primary_10_1002_aenm_202503468
crossref_primary_10_1002_ange_202511399
crossref_primary_10_1002_ange_202110373
crossref_primary_10_1016_j_cej_2022_140562
crossref_primary_10_1007_s12274_020_2991_6
crossref_primary_10_1002_smtd_202101131
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1021_jacs_3c11931
crossref_primary_10_1016_j_ijhydene_2021_08_203
crossref_primary_10_1016_j_jechem_2021_07_019
crossref_primary_10_1016_j_electacta_2022_141302
crossref_primary_10_1016_j_est_2025_116604
crossref_primary_10_1016_j_cogsc_2020_100370
crossref_primary_10_3390_ma16010177
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1016_j_mtener_2025_101849
crossref_primary_10_1039_D3SC05843C
crossref_primary_10_1002_advs_202200187
crossref_primary_10_1016_j_jpowsour_2022_231061
crossref_primary_10_1016_j_apenergy_2024_123665
crossref_primary_10_1002_adma_202310245
crossref_primary_10_1002_aenm_202101126
crossref_primary_10_1016_j_jpowsour_2022_232149
crossref_primary_10_1002_aenm_202102698
crossref_primary_10_1039_D1EE03691B
crossref_primary_10_1002_cssc_202201219
crossref_primary_10_1002_adma_202410262
crossref_primary_10_1039_D4NR00292J
crossref_primary_10_1039_D4SC07732F
crossref_primary_10_1002_cnl2_188
crossref_primary_10_1039_D2NJ01587K
crossref_primary_10_1039_D3EE00211J
crossref_primary_10_1016_j_jpowsour_2024_235134
crossref_primary_10_1039_D3EE00235G
crossref_primary_10_1021_jacs_2c11264
crossref_primary_10_1002_aenm_202403983
crossref_primary_10_1016_j_mser_2025_100974
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_1002_aenm_202301443
crossref_primary_10_1016_j_jechem_2021_07_027
crossref_primary_10_1002_adfm_202105027
crossref_primary_10_1002_ange_202112112
crossref_primary_10_1007_s12598_022_02097_9
crossref_primary_10_1007_s40242_025_5036_6
crossref_primary_10_1016_j_jechem_2025_01_062
crossref_primary_10_1002_adma_202104150
crossref_primary_10_1002_celc_202400206
crossref_primary_10_3390_polym16050687
crossref_primary_10_1002_aenm_202101562
crossref_primary_10_1002_ejic_202400649
crossref_primary_10_1002_anie_202209642
crossref_primary_10_1002_cey2_632
crossref_primary_10_1002_adfm_202204066
crossref_primary_10_1002_pol_20250107
crossref_primary_10_1016_j_jelechem_2021_115234
crossref_primary_10_1002_celc_202400212
crossref_primary_10_1016_j_cej_2022_139951
crossref_primary_10_1016_j_ensm_2025_104275
crossref_primary_10_1002_aenm_202002917
crossref_primary_10_1016_j_jcis_2023_07_208
crossref_primary_10_1038_s41586_024_08465_y
crossref_primary_10_1007_s40843_025_3566_3
crossref_primary_10_1039_D4LP00320A
crossref_primary_10_1002_ange_202004587
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1039_D2SC03980J
crossref_primary_10_1002_anie_202011484
crossref_primary_10_1021_acsaem_5c01195
crossref_primary_10_1002_anie_202011482
crossref_primary_10_1002_cssc_202201442
crossref_primary_10_1002_anie_202501743
crossref_primary_10_1039_D5SC01955A
crossref_primary_10_1039_D0QM01012J
crossref_primary_10_1002_ange_202420160
crossref_primary_10_1016_j_ensm_2025_104254
crossref_primary_10_1002_adma_202312486
crossref_primary_10_1016_j_cclet_2024_110305
crossref_primary_10_1002_anie_202002773
crossref_primary_10_1002_adfm_202407494
crossref_primary_10_1016_j_jcis_2021_05_081
crossref_primary_10_1016_j_jssc_2023_124305
crossref_primary_10_1002_advs_202503485
crossref_primary_10_1002_anie_202406465
crossref_primary_10_1016_j_jechem_2024_05_009
crossref_primary_10_1002_adsu_202400421
crossref_primary_10_1007_s40843_023_2772_5
crossref_primary_10_3390_polym16101401
crossref_primary_10_1002_anie_202103569
crossref_primary_10_1038_s41563_021_00951_2
crossref_primary_10_1002_adfm_202202919
crossref_primary_10_1002_advs_202513052
crossref_primary_10_1002_app_57372
crossref_primary_10_1002_smll_202412769
crossref_primary_10_1038_s41428_022_00708_x
crossref_primary_10_1002_cnl2_100
crossref_primary_10_1039_D1EE03163E
crossref_primary_10_1002_anie_202117511
crossref_primary_10_1002_batt_202300472
crossref_primary_10_1002_batt_202100146
crossref_primary_10_1073_pnas_2320012121
crossref_primary_10_26599_NR_2025_94907761
crossref_primary_10_1002_adma_202313388
crossref_primary_10_1007_s12209_020_00274_4
crossref_primary_10_1002_aenm_202203253
crossref_primary_10_1016_j_est_2024_112374
crossref_primary_10_1016_j_jpowsour_2022_231002
crossref_primary_10_3390_polym13111673
crossref_primary_10_1002_smll_202410374
crossref_primary_10_1021_acsami_5c08451
crossref_primary_10_1002_advs_202306680
crossref_primary_10_1021_acs_macromol_4c01738
crossref_primary_10_1002_cey2_612
crossref_primary_10_3390_polym15030639
crossref_primary_10_1016_j_jpowsour_2022_232338
crossref_primary_10_1016_j_nanoen_2023_108893
crossref_primary_10_1016_j_jallcom_2025_180907
crossref_primary_10_1039_D4SC01083C
crossref_primary_10_1002_adfm_202411715
crossref_primary_10_1002_cssc_202501246
crossref_primary_10_1002_ange_202016576
crossref_primary_10_1016_j_jechem_2022_01_005
crossref_primary_10_1002_aenm_202402247
crossref_primary_10_1002_aenm_202402489
crossref_primary_10_1038_s41563_020_00869_1
crossref_primary_10_1002_advs_202506749
crossref_primary_10_1021_jacs_1c04591
crossref_primary_10_1038_s41557_025_01866_0
crossref_primary_10_1016_j_jpowsour_2023_232865
crossref_primary_10_3390_molecules28145351
crossref_primary_10_1002_aenm_202204353
crossref_primary_10_1016_j_cej_2023_143090
crossref_primary_10_1021_jacs_2c06527
crossref_primary_10_3390_molecules27030586
crossref_primary_10_1007_s40843_020_1389_x
crossref_primary_10_1002_adfm_202407452
crossref_primary_10_1038_s41467_025_60355_7
crossref_primary_10_1002_ange_202008960
crossref_primary_10_1016_j_apmt_2023_101845
crossref_primary_10_1002_chem_202303320
crossref_primary_10_1002_ange_202503067
crossref_primary_10_3390_inorganics10110176
crossref_primary_10_1016_j_cej_2022_137920
crossref_primary_10_1002_batt_202400537
crossref_primary_10_1002_ange_202302754
crossref_primary_10_1016_j_cej_2022_134651
crossref_primary_10_1021_acsaelm_5c00069
crossref_primary_10_1016_j_cej_2020_126463
crossref_primary_10_1002_aenm_202304337
crossref_primary_10_1016_j_jpowsour_2022_231824
crossref_primary_10_1002_ange_202016875
crossref_primary_10_1016_j_electacta_2023_143498
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1016_j_jcis_2022_06_072
crossref_primary_10_1002_anie_202107216
crossref_primary_10_1016_j_pmatsci_2022_100960
crossref_primary_10_1016_j_jpowsour_2021_230464
crossref_primary_10_1039_D4EE00367E
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1016_j_nanoen_2023_108297
crossref_primary_10_1007_s11581_022_04803_0
crossref_primary_10_1021_jacs_2c02196
crossref_primary_10_1021_jacs_2c06550
crossref_primary_10_1002_anie_202207043
crossref_primary_10_1002_ange_202302539
crossref_primary_10_1038_s41467_021_27313_5
crossref_primary_10_1016_j_jpowsour_2021_230434
crossref_primary_10_1002_smll_202502591
crossref_primary_10_1016_j_matchemphys_2022_126430
crossref_primary_10_1016_j_cej_2021_133055
crossref_primary_10_1021_acs_jpcb_5c01001
crossref_primary_10_1002_adfm_202010445
crossref_primary_10_1002_ange_202216047
crossref_primary_10_1002_aenm_202303033
crossref_primary_10_1002_anie_202507570
crossref_primary_10_1002_adma_202210082
crossref_primary_10_1002_ange_202301629
crossref_primary_10_1016_j_cej_2022_135540
crossref_primary_10_1016_j_enchem_2020_100030
crossref_primary_10_1088_2752_5724_acdd86
crossref_primary_10_1002_ange_202421928
crossref_primary_10_1051_e3sconf_202337502010
crossref_primary_10_1002_ece2_76
crossref_primary_10_1002_adma_202107226
crossref_primary_10_1002_celc_202001396
crossref_primary_10_1002_ece2_69
crossref_primary_10_1002_ange_202011144
crossref_primary_10_1002_ange_202116289
crossref_primary_10_1016_j_ccr_2025_216604
crossref_primary_10_1016_j_jiec_2025_08_003
crossref_primary_10_1016_j_chempr_2022_09_015
crossref_primary_10_1007_s40820_024_01495_1
crossref_primary_10_1039_D1RA03068J
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1016_j_mtchem_2025_102711
crossref_primary_10_1002_adma_202211152
crossref_primary_10_1016_j_progpolymsci_2021_101474
crossref_primary_10_1039_D5CS00053J
crossref_primary_10_1002_anie_202424025
crossref_primary_10_1039_D3SE00406F
crossref_primary_10_1002_cssc_202301468
crossref_primary_10_1039_D4EE00520A
crossref_primary_10_1002_cssc_202301223
crossref_primary_10_1038_s41467_025_59892_y
crossref_primary_10_1016_j_cej_2022_137745
crossref_primary_10_1002_chem_202103088
crossref_primary_10_1016_j_cej_2025_166260
crossref_primary_10_1002_adfm_202112225
crossref_primary_10_1002_adfm_202208403
crossref_primary_10_1002_batt_202500136
crossref_primary_10_1002_anie_202115046
crossref_primary_10_1016_j_est_2025_118257
crossref_primary_10_1021_jacs_4c16492
crossref_primary_10_1016_j_cej_2024_157022
crossref_primary_10_1039_D3RA02269B
crossref_primary_10_1002_ange_202106238
crossref_primary_10_1016_j_electacta_2021_139628
crossref_primary_10_1016_j_mtener_2025_102001
crossref_primary_10_1002_batt_202500360
crossref_primary_10_1021_jacs_4c04044
crossref_primary_10_1002_adfm_202500197
crossref_primary_10_1002_ange_202115180
crossref_primary_10_1039_D5NR02473K
crossref_primary_10_1002_anie_202512956
crossref_primary_10_1039_D1SC07157B
crossref_primary_10_1039_D5CC01571E
crossref_primary_10_1002_adma_202109658
crossref_primary_10_1002_adma_202200077
crossref_primary_10_1016_j_coco_2025_102307
crossref_primary_10_1016_j_pnsc_2024_10_008
crossref_primary_10_1002_batt_202300090
crossref_primary_10_1002_ange_202312172
crossref_primary_10_1016_j_electacta_2025_146481
crossref_primary_10_1016_j_jpowsour_2020_229112
crossref_primary_10_1016_j_jpowsour_2020_229114
crossref_primary_10_1002_adfm_202401001
crossref_primary_10_1002_sstr_202400392
crossref_primary_10_1016_j_cej_2025_164519
crossref_primary_10_1016_j_jpowsour_2024_234491
crossref_primary_10_1002_anie_202403775
crossref_primary_10_1039_D4EE02835J
crossref_primary_10_1016_j_cej_2025_161245
crossref_primary_10_1016_j_jcis_2022_02_008
crossref_primary_10_1002_ange_202501743
crossref_primary_10_1016_j_mseb_2024_117886
crossref_primary_10_1002_anie_202416845
crossref_primary_10_1039_D0RA01997F
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_1016_j_jssc_2024_125059
crossref_primary_10_1002_anie_202403331
crossref_primary_10_1002_EXP_20220066
crossref_primary_10_1007_s11426_021_9985_x
crossref_primary_10_1002_batt_202200036
crossref_primary_10_1016_j_cej_2025_160123
crossref_primary_10_1002_smll_202105927
crossref_primary_10_1002_celc_202300389
crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1016_j_jcis_2024_07_083
crossref_primary_10_1002_cssc_202301809
crossref_primary_10_1002_adma_202416427
crossref_primary_10_1007_s11581_024_05656_5
crossref_primary_10_1002_adma_202416661
crossref_primary_10_1016_j_jpowsour_2024_234226
crossref_primary_10_1002_ange_202103569
crossref_primary_10_1002_adma_202306015
crossref_primary_10_1002_aenm_202100939
crossref_primary_10_1039_D4SC02699C
crossref_primary_10_1002_anie_202423118
crossref_primary_10_1002_tcr_202000074
crossref_primary_10_1016_j_cej_2024_151103
crossref_primary_10_1016_j_polymer_2022_125356
crossref_primary_10_1093_nsr_nwae045
crossref_primary_10_1002_adma_202405747
crossref_primary_10_1002_aenm_202003542
crossref_primary_10_1016_j_etran_2023_100261
crossref_primary_10_1016_j_jechem_2020_04_053
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1002_adma_202108384
crossref_primary_10_1016_j_est_2023_110323
crossref_primary_10_1039_D4NR02966F
crossref_primary_10_1016_j_jpowsour_2024_235782
crossref_primary_10_1016_j_cej_2022_139076
crossref_primary_10_1016_j_est_2023_110326
crossref_primary_10_1002_adma_202203154
crossref_primary_10_1016_j_jcis_2023_04_177
crossref_primary_10_1016_j_coelec_2020_05_006
crossref_primary_10_1002_anie_202506466
crossref_primary_10_1016_j_orgel_2020_105743
crossref_primary_10_1016_j_clay_2024_107570
crossref_primary_10_1002_batt_202000038
crossref_primary_10_1002_batt_202200463
crossref_primary_10_1016_j_jallcom_2022_165559
crossref_primary_10_1002_advs_202103798
crossref_primary_10_1016_j_rser_2025_116286
crossref_primary_10_1007_s11426_025_2786_y
crossref_primary_10_1002_anie_202016576
crossref_primary_10_1002_batt_202400325
crossref_primary_10_1016_j_cej_2024_151320
crossref_primary_10_1002_adfm_202309552
crossref_primary_10_1016_j_cej_2021_134353
crossref_primary_10_1002_adma_202101788
crossref_primary_10_1002_anie_202317135
crossref_primary_10_1073_pnas_2202449119
crossref_primary_10_1002_adma_202311401
crossref_primary_10_1039_D0EE03356A
crossref_primary_10_1039_D1QI00964H
crossref_primary_10_1016_j_jcis_2022_03_091
crossref_primary_10_1002_anie_202217710
crossref_primary_10_1007_s40820_024_01573_4
crossref_primary_10_1007_s10008_023_05493_y
crossref_primary_10_1007_s41918_024_00218_9
crossref_primary_10_1063_5_0255382
crossref_primary_10_1039_D5GC01964H
crossref_primary_10_1002_ange_202117511
crossref_primary_10_1002_anie_202004587
crossref_primary_10_1002_adfm_202424329
crossref_primary_10_1002_batt_202400312
crossref_primary_10_1002_cssc_202301847
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1007_s40242_021_1345_6
crossref_primary_10_1016_j_orgel_2020_105966
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1002_adfm_202111307
crossref_primary_10_1002_batt_202200406
crossref_primary_10_1002_aenm_202003735
crossref_primary_10_1021_jacs_3c06668
crossref_primary_10_1016_j_mtphys_2023_101253
crossref_primary_10_1039_D0NR07500K
crossref_primary_10_1039_D4EE05871B
crossref_primary_10_1016_j_est_2023_107482
crossref_primary_10_1016_j_est_2023_107241
crossref_primary_10_1016_j_jallcom_2024_176275
crossref_primary_10_1002_smll_202304668
crossref_primary_10_1002_anie_202112112
crossref_primary_10_1002_marc_202500133
crossref_primary_10_1103_PhysRevA_106_032428
crossref_primary_10_1002_pssa_202100710
crossref_primary_10_1016_S1872_5805_21_60001_X
crossref_primary_10_1002_cssc_202401841
crossref_primary_10_1016_j_est_2024_115152
crossref_primary_10_1002_cssc_202101324
crossref_primary_10_1016_j_jpowsour_2025_237537
crossref_primary_10_1016_j_jpowsour_2025_236208
crossref_primary_10_1098_rsos_210567
crossref_primary_10_1002_anie_202413971
crossref_primary_10_63995_SGCF3012
crossref_primary_10_1002_aenm_202003713
crossref_primary_10_1016_j_cej_2023_147305
crossref_primary_10_3390_molecules27206805
crossref_primary_10_1016_j_est_2025_116785
crossref_primary_10_1002_ange_202409421
crossref_primary_10_1016_j_jelechem_2023_117251
crossref_primary_10_1002_ange_202304036
crossref_primary_10_1016_j_pmatsci_2021_100911
crossref_primary_10_1002_batt_202200431
crossref_primary_10_1016_j_jelechem_2021_115737
crossref_primary_10_1002_aesr_202200030
crossref_primary_10_1016_j_jechem_2023_04_018
crossref_primary_10_1002_batt_202200436
crossref_primary_10_1002_adfm_202416000
crossref_primary_10_1039_D2NR02980D
crossref_primary_10_1002_aenm_202103010
crossref_primary_10_1038_s41467_023_36792_7
crossref_primary_10_1002_admi_202002161
crossref_primary_10_1016_j_ccr_2020_213650
crossref_primary_10_1016_j_mattod_2023_02_027
crossref_primary_10_1038_s41578_022_00478_1
crossref_primary_10_1016_j_jpowsour_2023_233876
crossref_primary_10_1039_D3RA03187J
crossref_primary_10_1002_anie_202403712
crossref_primary_10_1007_s12598_020_01588_x
crossref_primary_10_1002_adfm_202409952
crossref_primary_10_1002_cnma_202000384
crossref_primary_10_1039_D2QM00578F
crossref_primary_10_1002_ange_202003198
crossref_primary_10_1002_adfm_202311257
crossref_primary_10_1002_inf2_12480
crossref_primary_10_1039_D1QM00015B
crossref_primary_10_1002_anie_202304036
crossref_primary_10_3390_ma17235864
crossref_primary_10_1002_ange_202203646
crossref_primary_10_1002_ange_202215864
crossref_primary_10_1016_j_jcis_2023_09_149
crossref_primary_10_1002_ente_202200154
crossref_primary_10_1002_aenm_202401658
crossref_primary_10_1016_j_jcis_2025_137858
crossref_primary_10_1002_adfm_202312332
crossref_primary_10_1002_ange_202413971
crossref_primary_10_1002_ange_202216713
crossref_primary_10_1002_smll_202306406
crossref_primary_10_1016_j_matt_2021_01_022
crossref_primary_10_1016_j_cej_2023_144248
crossref_primary_10_1002_anie_202110373
crossref_primary_10_1016_j_polymer_2022_124658
crossref_primary_10_1007_s11172_022_3634_8
crossref_primary_10_1016_j_cej_2020_125967
crossref_primary_10_1007_s11664_021_09176_0
crossref_primary_10_1016_j_polymer_2024_127244
crossref_primary_10_1002_chem_202401853
crossref_primary_10_1002_anie_202001703
crossref_primary_10_1016_j_jece_2023_110878
crossref_primary_10_1039_D4SC04295F
crossref_primary_10_1155_er_6738352
crossref_primary_10_1002_anie_202303162
crossref_primary_10_1016_j_est_2022_106058
crossref_primary_10_1016_j_energy_2024_133981
crossref_primary_10_1016_j_electacta_2022_141449
crossref_primary_10_1016_j_electacta_2022_141206
crossref_primary_10_1002_cphc_202401137
crossref_primary_10_1021_acsanm_5c00990
crossref_primary_10_1016_j_jallcom_2025_181972
crossref_primary_10_1016_j_cclet_2025_111185
crossref_primary_10_1002_ange_202303162
crossref_primary_10_1016_j_colsurfa_2022_130496
crossref_primary_10_1016_j_synthmet_2022_117113
crossref_primary_10_1016_j_nanoen_2024_110085
crossref_primary_10_1016_j_cej_2022_139016
crossref_primary_10_1002_advs_202505936
crossref_primary_10_1002_celc_202400550
crossref_primary_10_26599_NRE_2025_9120159
crossref_primary_10_1134_S1070363224060410
crossref_primary_10_1002_advs_202500484
crossref_primary_10_1002_batt_202200402
crossref_primary_10_1016_j_apmate_2021_10_002
crossref_primary_10_1016_j_jechem_2020_05_021
crossref_primary_10_1002_cssc_202101386
crossref_primary_10_1039_D2EE00162D
crossref_primary_10_1021_jacs_3c01131
crossref_primary_10_1016_j_jpowsour_2020_228814
crossref_primary_10_1002_anie_202504928
crossref_primary_10_1002_adfm_202420573
crossref_primary_10_1016_j_cattod_2021_09_040
crossref_primary_10_1002_anie_202011144
crossref_primary_10_1016_j_jcis_2022_08_098
crossref_primary_10_1002_anie_202508057
crossref_primary_10_1515_pac_2021_0706
crossref_primary_10_1002_sus2_4
crossref_primary_10_1039_D3QM00850A
crossref_primary_10_1002_anie_202216047
crossref_primary_10_1002_anie_202117661
crossref_primary_10_1016_j_isci_2024_111229
crossref_primary_10_1016_j_jelechem_2022_116727
crossref_primary_10_1007_s40843_021_1689_4
crossref_primary_10_1002_cphc_202500422
crossref_primary_10_1039_D0MH01364A
crossref_primary_10_1002_cnma_202100294
crossref_primary_10_1002_smll_202406173
crossref_primary_10_1039_D2MH00279E
crossref_primary_10_1016_j_matt_2022_09_008
crossref_primary_10_59717_j_xinn_mater_2025_100150
crossref_primary_10_1002_aenm_202403029
crossref_primary_10_1002_aenm_202404116
crossref_primary_10_1016_j_coco_2021_100947
crossref_primary_10_1016_j_optmat_2024_115132
crossref_primary_10_1039_D3QM00501A
crossref_primary_10_1002_ange_202403712
crossref_primary_10_1021_jacs_2c00296
crossref_primary_10_1002_aesr_202100165
crossref_primary_10_1016_j_jechem_2020_09_037
crossref_primary_10_1021_jacs_4c17713
crossref_primary_10_1038_s41427_024_00557_5
crossref_primary_10_1002_adfm_202211950
crossref_primary_10_1002_chem_202005259
crossref_primary_10_1016_j_mattod_2021_11_008
crossref_primary_10_1016_j_progpolymsci_2025_102012
crossref_primary_10_1002_aenm_202100381
crossref_primary_10_1002_adfm_202107523
crossref_primary_10_1002_adma_202207245
crossref_primary_10_1002_anie_202409421
crossref_primary_10_1002_app_56140
crossref_primary_10_1039_D3RA04345B
crossref_primary_10_1016_j_cej_2024_155289
crossref_primary_10_1021_jacs_3c13113
crossref_primary_10_1039_D3SC06331C
crossref_primary_10_1002_aenm_202300442
crossref_primary_10_1016_j_materresbull_2024_112858
crossref_primary_10_1016_j_apsusc_2021_152154
crossref_primary_10_1039_D1EE01812D
crossref_primary_10_1002_ange_202317135
crossref_primary_10_1016_j_cej_2022_138773
crossref_primary_10_1039_D5TA05781G
crossref_primary_10_1016_j_cej_2024_157457
crossref_primary_10_1016_j_cej_2022_136598
crossref_primary_10_1002_ange_202403775
crossref_primary_10_1002_ange_202416845
crossref_primary_10_1016_j_nanoen_2023_108512
crossref_primary_10_3390_polym15061450
crossref_primary_10_1016_j_mtchem_2025_102677
crossref_primary_10_1016_j_cej_2023_148447
crossref_primary_10_1016_j_nanoen_2022_107130
crossref_primary_10_1016_j_cej_2025_164037
crossref_primary_10_1021_acssuschemeng_5c07991
crossref_primary_10_1021_acscentsci_3c01478
crossref_primary_10_1002_slct_202303953
crossref_primary_10_1002_aenm_202401257
crossref_primary_10_1016_j_est_2024_112006
crossref_primary_10_1016_j_coelec_2021_100745
crossref_primary_10_1002_chem_202101611
crossref_primary_10_1016_j_jpowsour_2023_232963
crossref_primary_10_1007_s12598_023_02596_3
crossref_primary_10_1039_D1EE00419K
crossref_primary_10_1007_s12274_022_4995_x
crossref_primary_10_1016_j_cej_2021_132704
crossref_primary_10_1038_s41467_021_23521_1
crossref_primary_10_1016_j_jclepro_2023_136246
crossref_primary_10_1007_s11426_025_2593_1
crossref_primary_10_1002_adma_202409521
crossref_primary_10_5796_electrochemistry_25_71018
crossref_primary_10_1002_adfm_202107718
crossref_primary_10_1002_smll_202308881
crossref_primary_10_1002_aenm_202100330
crossref_primary_10_1002_idm2_12070
crossref_primary_10_1038_s41563_023_01518_z
crossref_primary_10_1016_j_jpowsour_2022_231361
crossref_primary_10_1002_adfm_202315669
crossref_primary_10_1016_j_jpowsour_2023_232738
crossref_primary_10_1007_s12274_022_4181_1
crossref_primary_10_1002_smll_202005752
crossref_primary_10_1016_j_cej_2023_144068
crossref_primary_10_1002_admi_202300464
crossref_primary_10_1002_ange_202307365
crossref_primary_10_1038_s41467_024_53803_3
crossref_primary_10_1002_ange_202423118
crossref_primary_10_1038_s41563_021_00954_z
crossref_primary_10_1016_j_jechem_2020_08_054
crossref_primary_10_1126_scirobotics_adr6125
crossref_primary_10_1002_ange_202317393
crossref_primary_10_1007_s13233_025_00385_8
crossref_primary_10_1007_s12274_023_5871_z
crossref_primary_10_1016_j_susmat_2025_e01310
crossref_primary_10_1016_j_matlet_2022_133682
crossref_primary_10_1016_j_jpowsour_2025_238406
crossref_primary_10_1002_anie_202511229
Cites_doi 10.1039/C7TA09968A
10.1038/507026a
10.1002/aenm.201802151
10.1002/adma.201901808
10.1002/anie.201906844
10.1016/j.jpowsour.2019.04.087
10.1038/s41467-018-07599-8
10.1002/advs.201902129
10.1021/am405470p
10.1038/s41565-019-0371-8
10.1021/cm000511k
10.1149/2.015401jes
10.1149/1.2411755
10.1021/acscentsci.6b00220
10.1038/nmat2372
10.1039/C7TC04645F
10.1021/cr941181o
10.1002/anie.201603897
10.3390/app9183671
10.1002/adma.201705644
10.1038/s41560-018-0108-1
10.1021/jacs.7b06313
10.1016/S1388-2481(03)00121-8
10.1126/sciadv.1500330
10.1038/s41467-018-06708-x
10.1039/c39810000317
10.1002/adma.201800561
10.1038/d41586-018-05752-3
10.1021/acs.chemmater.8b01304
10.1016/j.nanoen.2017.04.055
10.1002/anie.201700148
10.1039/c3ee40709h
10.1021/jacs.7b02648
10.1021/cr5003003
10.1039/c3ta14920j
10.1039/c3sc22093a
10.1002/cssc.201901545
10.1021/jacs.5b00336
10.1021/acs.nanolett.6b00954
10.1002/adma.201703868
10.1016/j.electacta.2011.08.115
10.1002/adfm.201906436
10.1038/nenergy.2016.141
10.1002/anie.201105006
10.1016/0013-4686(72)90010-2
10.1039/C4CC07149B
10.1016/j.joule.2017.08.019
10.1149/1.2086549
10.1002/adma.201901640
10.1002/adma.201502329
10.1021/jz501557n
10.1016/j.nanoen.2019.103949
10.1021/cr020731c
10.1002/advs.201500018
10.1016/j.ensm.2018.06.005
10.1002/adfm.201901730
10.1021/nl2039666
10.1021/jp040552u
10.1021/ja507852t
10.1002/app.28470
10.1038/s41467-018-02889-7
10.1002/anie.201604519
10.1021/acs.chemmater.6b00624
10.1016/S0009-2614(02)00705-4
10.1038/s41560-018-0107-2
10.1246/cl.2011.750
10.1002/aenm.201200947
10.1002/adsu.201600032
10.1016/j.chempr.2018.09.005
10.1002/asia.201800326
10.1021/acs.jpcc.7b04341
10.1149/2.0031514jes
10.1039/C6EE03185D
10.1038/ncomms6335
10.1038/s41560-017-0014-y
10.1002/pat.1990.220010106
10.1016/j.isci.2019.04.010
10.1002/anie.201706604
10.1002/aenm.201703509
10.1016/j.egypro.2016.05.029
10.1002/aenm.201701316
10.1016/j.joule.2018.07.008
10.1021/jacs.7b11272
10.1039/c39770000578
10.1002/anie.201902185
10.1016/j.electacta.2016.10.158
10.1073/pnas.1717892115
10.1007/s11426-018-9410-0
10.1016/j.ensm.2019.05.001
10.1038/s41560-019-0405-3
10.1021/acsami.7b18758
10.1021/acsami.8b06803
10.1002/aenm.201602279
10.1021/acs.accounts.9b00231
10.1021/acs.chemrev.7b00115
10.1016/j.nanoen.2015.10.015
10.1002/cssc.200700161
10.1063/1.438420
10.1002/aenm.201501780
10.1002/adma.201903955
10.1063/1.4898006
10.1038/s41928-018-0048-6
10.1002/anie.201707473
10.1002/anie.201503072
10.1126/science.1151831
10.1021/acssuschemeng.9b01800
10.1021/acssuschemeng.9b02315
10.1039/C8QI00197A
10.1002/adma.200803073
10.1016/j.jpowsour.2007.10.086
10.1038/s41563-018-0215-1
10.1002/adma.201305005
10.1038/s41467-018-03114-1
10.1149/1.2115542
10.1021/cg070386q
10.1002/anie.201109187
10.1002/anie.201805540
10.1016/j.chempr.2017.09.004
10.1002/anie.201903152
10.1073/pnas.1314345110
10.1039/C8SC02995D
10.1016/j.ensm.2019.11.020
10.1002/aenm.201400554
10.1002/marc.201400167
10.1021/jacs.5b02290
10.1021/acs.chemmater.6b00267
10.1038/451652a
10.1039/C9CC05679C
10.1016/j.jallcom.2018.02.048
10.1002/anie.201607194
10.1016/j.jpowsour.2014.12.082
10.1021/am404965p
10.1002/advs.201500124
10.1038/s41560-018-0291-0
10.1002/anie.201302586
10.1007/s12274-017-1580-9
10.1021/acsami.7b18252
10.1149/1.2095460
10.1021/jacs.9b03467
10.1002/smll.201805061
10.1016/j.matlet.2016.04.073
10.1039/C9TA05252F
10.1021/acsami.6b07591
10.1246/bcsj.77.2203
10.1038/nenergy.2017.74
10.1016/j.joule.2017.08.001
10.1021/acs.chemmater.8b01317
10.1002/adma.200602584
10.1016/j.jpowsour.2018.02.039
10.1016/j.nanoen.2014.10.012
10.1039/C8TA07097K
10.1038/natrevmats.2018.13
10.1039/C4CS00218K
10.1002/anie.201601119
10.1039/C8TA05336G
10.1002/anie.201506673
10.1016/j.jechem.2018.06.003
10.1016/S1452-3981(23)18227-7
ContentType Journal Article
Copyright Springer Nature Limited 2020
2020. Springer Nature Limited.
2020© Springer Nature Limited 2020
Springer Nature Limited 2020.
Copyright_xml – notice: Springer Nature Limited 2020
– notice: 2020. Springer Nature Limited.
– notice: 2020© Springer Nature Limited 2020
– notice: Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41570-020-0160-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
ProQuest Central Student
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2397-3358
EndPage 142
ExternalDocumentID 37128020
10_1038_s41570_020_0160_9
Genre Journal Article
Review
GroupedDBID 0R~
88I
AAEEF
AARCD
AAWYQ
AAYZH
ABJCF
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFKRA
AFSHS
AGSTI
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BGLVJ
BKKNO
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
M2P
M7S
NNMJJ
O9-
ODYON
PTHSS
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
AFFHD
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
NPM
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c466t-641b2e912963a8f3399e741cdd58ed47b0c846ebade01c38d2bd2f1f363907393
IEDL.DBID BENPR
ISICitedReferencesCount 1095
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513106500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2397-3358
IngestDate Thu Sep 04 20:20:46 EDT 2025
Wed Aug 13 06:28:28 EDT 2025
Sat Aug 23 12:37:09 EDT 2025
Wed Feb 19 02:24:27 EST 2025
Tue Nov 18 22:19:43 EST 2025
Sat Nov 29 06:23:17 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2020. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-641b2e912963a8f3399e741cdd58ed47b0c846ebade01c38d2bd2f1f363907393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2094-1524
0000-0001-8604-9689
PMID 37128020
PQID 2377423800
PQPubID 4669715
PageCount 16
ParticipantIDs proquest_miscellaneous_2808587691
proquest_journals_2475007070
proquest_journals_2377423800
pubmed_primary_37128020
crossref_citationtrail_10_1038_s41570_020_0160_9
crossref_primary_10_1038_s41570_020_0160_9
springer_journals_10_1038_s41570_020_0160_9
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Chemistry
PublicationTitleAbbrev Nat Rev Chem
PublicationTitleAlternate Nat Rev Chem
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Huang (CR121) 2013; 52
Sato (CR18) 2018; 140
Matsunaga, Daifuku, Nakajima, Kawagoe (CR29) 1990; 1
Qin (CR87) 2019; 15
Park (CR162) 2015; 27
Novák, Müller, Santhanam, Haas (CR27) 1997; 97
Dai (CR93) 2019; 16
Han (CR17) 2019; 7
Lei (CR47) 2017; 10
Iordache (CR39) 2016; 8
CR159
Cho, Kim, Park (CR96) 2000; 12
CR157
Li (CR84) 2019; 58
CR158
CR156
Han, Qing, Sun, Sun (CR43) 2012; 51
Lee (CR102) 2014; 26
Song, Qian, Otani, Zhou (CR110) 2016; 6
Zhao (CR131) 2016; 55
Song, Qian, Zhang, Otani, Zhou (CR109) 2015; 2
Ren, Su, Chen (CR152) 2008; 109
Jia, Ge, Shao, Wang, Wallace (CR28) 2019; 7
Kim, Wu, Chun, Whitacre, Bettinger (CR160) 2013; 110
Lu, Zhang, Jahn, Pfleging, Seifert (CR141) 2019; 9
Bhargav, Bell, Karty, Cui, Fu (CR40) 2018; 10
Gu (CR138) 2019; 141
Liu, Zhu, Cui (CR128) 2019; 4
Huang, Yao, Liang, Dai (CR95) 2018; 743
Vizintin (CR62) 2018; 9
Visco, DeJonghe (CR30) 1988; 135
Walter, Kravchyk, Böfer, Widmer, Kovalenko (CR50) 2018; 30
Lei (CR52) 2018; 9
Lu (CR164) 2017; 121
Luo (CR45) 2018; 115
Armand (CR37) 2009; 8
Goodenough (CR1) 2018; 1
Liang (CR133) 2015; 137
Friebe, Lex-Balducci, Schubert (CR13) 2019; 12
Ma, Zhao, Wang, Pan, Chen (CR112) 2016; 55
Wang, Guo, Fu (CR31) 2019; 52
Zhu (CR120) 2014; 136
Miroshnikov (CR19) 2019; 7
Yang (CR130) 2018; 27
Zhang (CR171) 2019; 31
Visco, Liu, Armand, de Jonghe (CR142) 1990; 190
Wu (CR85) 2015; 54
Hansen (CR41) 2018; 10
Song (CR115) 2012; 12
Nishide, Oyaizu (CR161) 2008; 319
Williams, Byrne, Driscoll (CR22) 1969; 116
Luo, Allen, Raju, Ji (CR58) 2014; 4
Luo (CR78) 2018; 57
Li (CR80) 2019; 29
Yoshino (CR3) 2012; 51
Bresser (CR71) 2018; 382
Peng (CR98) 2017; 2
Huang (CR56) 2019
Luo, Liu, Zhao, Li, Chen (CR104) 2017; 56
Cao, Li, Lu, Liu, Amine (CR69) 2019; 14
Wain (CR54) 2005; 109
Dawut, Lu, Miao, Chen (CR49) 2018; 5
Lu (CR38) 2019; 58
Rodríguez-Pérez (CR48) 2017; 139
Yao, Senoh, Sakai, Kiyobayashi (CR100) 2011; 6
Zhang (CR125) 2019; 31
Jia (CR82) 2014; 10
Lin (CR149) 2015; 51
Prabakar (CR51) 2019; 6
Li, Lu, Chen, Amine (CR5) 2018; 30
Chen (CR21) 2008; 1
Wang, Li, Easley, Lutkenhaus (CR14) 2019; 18
Cheng, Zhang, Zhao, Zhang (CR76) 2017; 117
Yao, Ando, Kiyobayashi (CR143) 2016; 89
Lee (CR65) 2017; 2
Wang (CR66) 2017; 56
Van Noorden (CR4) 2014; 507
Cano (CR70) 2018; 3
Sun (CR86) 2016; 55
Sieuw (CR170) 2019; 10
Häupler (CR90) 2014; 35
Xiang (CR36) 2008; 8
Janek, Zeier (CR72) 2016; 1
Liang, Zhang, Chen (CR118) 2013; 4
Zhang (CR154) 2018; 6
Hanyu, Sugimoto, Ganbe, Masuda, Honma (CR144) 2014; 161
Han, Chang, Yuan, Sun, Sun (CR57) 2007; 19
Wu (CR64) 2015; 1
Cai (CR91) 2015; 278
Lee, Park (CR105) 2017; 7
Matsunaga, Kubota, Sugimoto, Satoh (CR42) 2011; 40
Jouhara (CR166) 2018; 9
Alt, Binder, Köhling, Sandstede (CR23) 1972; 17
Acker, Rzesny, Marchiori, Araujo, Esser (CR55) 2019; 29
Kato, Senoo, Yao, Misaki (CR94) 2014; 2
Wu (CR67) 2017; 56
Suga, Ohshiro, Sugita, Oyaizu, Nishide (CR124) 2009; 21
Tobishima, Yamaki, Yamaji (CR32) 1984; 131
Lee, Kim, Park (CR106) 2016; 28
Xie, Zhang (CR15) 2019; 15
Kim (CR20) 2019; 58
Lu, Zhang, Chen (CR79) 2019; 62
Amin (CR163) 2018; 30
Liu, Visco, De Jonghe (CR35) 1990; 137
CR75
CR74
Otteny (CR89) 2018; 8
Luo, Chu, Huang, Sun, Li (CR146) 2014; 3
Lin, Liu, Ai, Liang (CR68) 2018; 9
Ju (CR97) 2014; 6
Mulzer (CR134) 2016; 2
Luo, Fan, Ma, Gao, Wang (CR136) 2017; 3
Zhu, Chen (CR169) 2015; 162
CR6
Jia (CR88) 2019; 64
Duan (CR114) 2016; 221
Whittingham (CR7) 2014; 114
Olivetti, Ceder, Gaustad, Fu (CR11) 2017; 1
Li, Zhan, Zhou (CR153) 2003; 5
Ivory (CR25) 1979; 71
Liang, Zhang, Yang, Tao, Chen (CR99) 2013; 3
CR127
Iordache (CR139) 2017; 1
Song, Zhou (CR53) 2013; 6
Kwon (CR119) 2018; 6
Xie, Wang, Xu, Zhang (CR108) 2018; 8
MacInnes (CR26) 1981; 7
CR81
Teranishi (CR132) 2014; 105
Gu, Bai, Majumder, Huang, Chen (CR147) 2019; 429
Renault (CR44) 2016; 28
Armand, Tarascon (CR12) 2008; 451
CR129
Meng (CR60) 2017; 1
Zhang, Guo, Zhao, Niu, Chen (CR113) 2015; 2
Shirakawa, Louis, MacDiarmid, Chiang, Heeger (CR24) 1977; 16
Lee (CR92) 2019; 20
Zhang (CR150) 2018; 6
Feng, Cao, Ai, Yang (CR151) 2008; 177
Gottis, Barrès, Dolhem, Poizot (CR165) 2014; 6
Whittingham (CR2) 2004; 104
Banda (CR167) 2017; 7
Deng, Zhou (CR83) 2016; 176
Shi (CR116) 2018; 30
Hong (CR101) 2014; 5
Turcheniuk, Bondarev, Singhal, Yushin (CR10) 2018; 559
Chen (CR155) 2019; 31
Ma, Lv, Li (CR145) 2014; 3
Chen (CR59) 2015; 18
Liang, Yao (CR61) 2018; 2
Song (CR111) 2015; 54
Jiang (CR77) 2018; 13
Lakraychi (CR117) 2018; 6
Wang (CR140) 2017; 139
Kim (CR16) 2019; 4
Suga, Pu, Oyaizu, Nishide (CR34) 2004; 77
Schmuch, Wagner, Hörpel, Placke, Winter (CR73) 2018; 3
Kim (CR63) 2014; 5
Zhang (CR8) 2015; 44
Vaalma, Buchholz, Weil, Passerini (CR9) 2018; 3
Wu (CR123) 2016; 55
Nakahara (CR33) 2002; 359
Lu, Zhang, Li, Niu, Chen (CR126) 2018; 4
Wang (CR135) 2016; 16
Kundu (CR137) 2018; 30
Jing, Liang, Gheytani, Yao (CR103) 2017; 37
Zhao, Wang, Chen, Ma, Chen (CR107) 2017; 10
Zhang, Cheng, Shi, Chen, Cheng (CR148) 2018; 10
Wu (CR46) 2019; 55
Wang (CR168) 2015; 137
Senoh, Yao, Sakaebe, Yasuda, Siroma (CR122) 2011; 56
C Luo (160_CR45) 2018; 115
M Kato (160_CR94) 2014; 2
S-i Tobishima (160_CR32) 1984; 131
T Matsunaga (160_CR29) 1990; 1
M Yao (160_CR143) 2016; 89
L Ren (160_CR152) 2008; 109
X Chen (160_CR155) 2019; 31
X Han (160_CR43) 2012; 51
JK Feng (160_CR151) 2008; 177
H Banda (160_CR167) 2017; 7
160_CR6
M Li (160_CR5) 2018; 30
X Han (160_CR57) 2007; 19
Y Liang (160_CR133) 2015; 137
D MacInnes Jr. (160_CR26) 1981; 7
K Nakahara (160_CR33) 2002; 359
W Luo (160_CR58) 2014; 4
C Han (160_CR17) 2019; 7
J Meng (160_CR60) 2017; 1
Y Liang (160_CR99) 2013; 3
H Zhang (160_CR150) 2018; 6
H Alt (160_CR23) 1972; 17
SJ Visco (160_CR142) 1990; 190
P Acker (160_CR55) 2019; 29
X Wu (160_CR64) 2015; 1
T Li (160_CR80) 2019; 29
A Yoshino (160_CR3) 2012; 51
MS Whittingham (160_CR7) 2014; 114
J Kim (160_CR20) 2019; 58
R Van Noorden (160_CR4) 2014; 507
Y Liu (160_CR128) 2019; 4
Z Song (160_CR111) 2015; 54
Y Jing (160_CR103) 2017; 37
K Zhang (160_CR8) 2015; 44
T Matsunaga (160_CR42) 2011; 40
G Dawut (160_CR49) 2018; 5
F Otteny (160_CR89) 2018; 8
H Nishide (160_CR161) 2008; 319
JE Kwon (160_CR119) 2018; 6
H Senoh (160_CR122) 2011; 56
H Kim (160_CR63) 2014; 5
C Luo (160_CR136) 2017; 3
M Armand (160_CR37) 2009; 8
160_CR75
J Wu (160_CR85) 2015; 54
X Lu (160_CR141) 2019; 9
160_CR74
J Hong (160_CR101) 2014; 5
X Jia (160_CR28) 2019; 7
160_CR81
H Jia (160_CR88) 2019; 64
Z Luo (160_CR104) 2017; 56
S Jiang (160_CR77) 2018; 13
C Friebe (160_CR13) 2019; 12
AJ Wain (160_CR54) 2005; 109
J Lee (160_CR106) 2016; 28
H Shirakawa (160_CR24) 1977; 16
K Sato (160_CR18) 2018; 140
Z Song (160_CR109) 2015; 2
G Dai (160_CR93) 2019; 16
M Lee (160_CR65) 2017; 2
J Lee (160_CR105) 2017; 7
Y Liang (160_CR118) 2013; 4
160_CR129
CR Mulzer (160_CR134) 2016; 2
160_CR127
A Iordache (160_CR39) 2016; 8
B Häupler (160_CR90) 2014; 35
S Wang (160_CR14) 2019; 18
M Walter (160_CR50) 2018; 30
S Gottis (160_CR165) 2014; 6
Y Lu (160_CR126) 2018; 4
J Li (160_CR153) 2003; 5
L Zhang (160_CR125) 2019; 31
K Lei (160_CR47) 2017; 10
Y Hanyu (160_CR144) 2014; 161
Z Lei (160_CR52) 2018; 9
M Liu (160_CR35) 1990; 137
Y Shi (160_CR116) 2018; 30
Y Liang (160_CR61) 2018; 2
Y Wu (160_CR46) 2019; 55
M Wu (160_CR123) 2016; 55
W Huang (160_CR56) 2019
Y Chen (160_CR59) 2015; 18
160_CR159
160_CR157
C Wang (160_CR168) 2015; 137
K-A Hansen (160_CR41) 2018; 10
160_CR158
J Xie (160_CR15) 2019; 15
T Deng (160_CR83) 2016; 176
Z Song (160_CR53) 2013; 6
J Cho (160_CR96) 2000; 12
JB Goodenough (160_CR1) 2018; 1
Y Cao (160_CR69) 2019; 14
DJ Kim (160_CR16) 2019; 4
A Yang (160_CR130) 2018; 27
ZP Cano (160_CR70) 2018; 3
J Duan (160_CR114) 2016; 221
T Sun (160_CR86) 2016; 55
160_CR156
T Suga (160_CR124) 2009; 21
K Turcheniuk (160_CR10) 2018; 559
M Armand (160_CR12) 2008; 451
A Iordache (160_CR139) 2017; 1
DI Williams (160_CR22) 1969; 116
Z Song (160_CR110) 2016; 6
Q Zhao (160_CR131) 2016; 55
D Kundu (160_CR137) 2018; 30
X-B Cheng (160_CR76) 2017; 117
D-Y Wang (160_CR31) 2019; 52
MS Whittingham (160_CR2) 2004; 104
S Renault (160_CR44) 2016; 28
SH Ju (160_CR97) 2014; 6
L Zhang (160_CR148) 2018; 10
D Bresser (160_CR71) 2018; 382
AE Lakraychi (160_CR117) 2018; 6
Y Lin (160_CR149) 2015; 51
C Vaalma (160_CR9) 2018; 3
X Wang (160_CR66) 2017; 56
YJ Kim (160_CR160) 2013; 110
A Jouhara (160_CR166) 2018; 9
F Luo (160_CR146) 2014; 3
R Schmuch (160_CR73) 2018; 3
Z Zhu (160_CR120) 2014; 136
L Sieuw (160_CR170) 2019; 10
EA Olivetti (160_CR11) 2017; 1
X Wu (160_CR67) 2017; 56
C Ma (160_CR145) 2014; 3
K Amin (160_CR163) 2018; 30
X Huang (160_CR95) 2018; 743
T Teranishi (160_CR132) 2014; 105
T Ma (160_CR112) 2016; 55
W Huang (160_CR121) 2013; 52
A Vizintin (160_CR62) 2018; 9
M Miroshnikov (160_CR19) 2019; 7
Z Zhu (160_CR169) 2015; 162
SJR Prabakar (160_CR51) 2019; 6
IA Rodríguez-Pérez (160_CR48) 2017; 139
H Chen (160_CR21) 2008; 1
T Suga (160_CR34) 2004; 77
Q Zhao (160_CR107) 2017; 10
X Jia (160_CR82) 2014; 10
Z Song (160_CR115) 2012; 12
J Zhang (160_CR171) 2019; 31
J Janek (160_CR72) 2016; 1
G Li (160_CR84) 2019; 58
P Novák (160_CR27) 1997; 97
Y Lu (160_CR38) 2019; 58
M Lee (160_CR102) 2014; 26
Y Lu (160_CR164) 2017; 121
Y Lu (160_CR79) 2019; 62
Z Luo (160_CR78) 2018; 57
J Xie (160_CR108) 2018; 8
Y Zhang (160_CR154) 2018; 6
DM Ivory (160_CR25) 1979; 71
S Lee (160_CR92) 2019; 20
K Zhang (160_CR113) 2015; 2
Y Cai (160_CR91) 2015; 278
C Peng (160_CR98) 2017; 2
M Yao (160_CR100) 2011; 6
Y Wang (160_CR135) 2016; 16
M Park (160_CR162) 2015; 27
S Gu (160_CR138) 2019; 141
Z Lin (160_CR68) 2018; 9
J Qin (160_CR87) 2019; 15
SJ Visco (160_CR30) 1988; 135
S Gu (160_CR147) 2019; 429
S Wang (160_CR140) 2017; 139
A Bhargav (160_CR40) 2018; 10
J Xiang (160_CR36) 2008; 8
References_xml – volume: 6
  start-page: 3134
  year: 2018
  end-page: 3140
  ident: CR119
  article-title: Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09968A
– volume: 507
  start-page: 26
  year: 2014
  end-page: 28
  ident: CR4
  article-title: The rechargeable revolution: a better battery
  publication-title: Nature
  doi: 10.1038/507026a
– ident: CR74
– volume: 8
  start-page: 1802151
  year: 2018
  ident: CR89
  article-title: Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802151
– volume: 31
  start-page: 1901808
  year: 2019
  ident: CR171
  article-title: Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901808
– volume: 58
  start-page: 16764
  year: 2019
  end-page: 16769
  ident: CR20
  article-title: Biological nicotinamide cofactor as a redox-active motif for reversible electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906844
– volume: 429
  start-page: 22
  year: 2019
  end-page: 29
  ident: CR147
  article-title: Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.087
– ident: CR158
– volume: 9
  year: 2018
  ident: CR68
  article-title: Aligning academia and industry for unified battery performance metrics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07599-8
– volume: 6
  start-page: 1902129
  year: 2019
  ident: CR51
  article-title: Graphite as a long-life Ca -intercalation anode and its implementation for rocking-chair type calcium-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902129
– volume: 6
  start-page: 10870
  year: 2014
  end-page: 10876
  ident: CR165
  article-title: Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405470p
– volume: 14
  start-page: 200
  year: 2019
  end-page: 207
  ident: CR69
  article-title: Bridging the academic and industrial metrics for next-generation practical batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0371-8
– volume: 12
  start-page: 3788
  year: 2000
  end-page: 3791
  ident: CR96
  article-title: Novel LiCoO cathode material with Al O coating for a Li ion cell
  publication-title: Chem. Mater.
  doi: 10.1021/cm000511k
– volume: 161
  start-page: A6
  year: 2014
  end-page: A9
  ident: CR144
  article-title: Multielectron redox compounds for organic cathode quasi-solid state lithium battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.015401jes
– volume: 116
  start-page: 2
  year: 1969
  end-page: 4
  ident: CR22
  article-title: A high energy density lithium/dichloroisocyanuric acid battery system
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2411755
– volume: 2
  start-page: 667
  year: 2016
  end-page: 673
  ident: CR134
  article-title: Superior charge storage and power density of a conducting polymer-modified covalent organic framework
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 8
  start-page: 120
  year: 2009
  end-page: 125
  ident: CR37
  article-title: Conjugated dicarboxylate anodes for Li-ion batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2372
– volume: 6
  start-page: 111
  year: 2018
  end-page: 118
  ident: CR154
  article-title: Impact of the synthesis method on the solid-state charge transport of radical polymers
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04645F
– volume: 97
  start-page: 207
  year: 1997
  end-page: 282
  ident: CR27
  article-title: Electrochemically active polymers for rechargeable batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr941181o
– volume: 55
  start-page: 10027
  year: 2016
  end-page: 10031
  ident: CR123
  article-title: Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603897
– volume: 9
  start-page: 3671
  year: 2019
  ident: CR141
  article-title: Improved capacity retention of SiO -coated LiNi Mn Co O cathode material for lithium-ion batteries
  publication-title: Appl. Sci.
  doi: 10.3390/app9183671
– volume: 30
  start-page: 1705644
  year: 2018
  ident: CR50
  article-title: Polypyrenes as high-performance cathode materials for aluminum batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705644
– volume: 3
  start-page: 279
  year: 2018
  end-page: 289
  ident: CR70
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 139
  start-page: 13031
  year: 2017
  end-page: 13037
  ident: CR48
  article-title: Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06313
– volume: 5
  start-page: 555
  year: 2003
  end-page: 560
  ident: CR153
  article-title: Synthesis and electrochemical properties of polypyrrole-coated poly(2,5-dimercapto-1,3,4-thiadiazole)
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(03)00121-8
– ident: CR129
– volume: 1
  year: 2015
  ident: CR64
  article-title: Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500330
– volume: 9
  year: 2018
  ident: CR166
  article-title: Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06708-x
– volume: 7
  start-page: 317
  year: 1981
  end-page: 319
  ident: CR26
  article-title: Organic batteries: reversible - and -type electrochemical doping of polyacetylene, (CH)
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39810000317
– volume: 30
  start-page: 1800561
  year: 2018
  ident: CR5
  article-title: 30 years of lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 559
  start-page: 467
  year: 2018
  end-page: 470
  ident: CR10
  article-title: Ten years left to redesign lithium-ion batteries
  publication-title: Nature
  doi: 10.1038/d41586-018-05752-3
– volume: 30
  start-page: 3508
  year: 2018
  end-page: 3517
  ident: CR116
  article-title: Understanding the electrochemical properties of naphthalene diimide: implication for stable and high-rate lithium-ion battery electrodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01304
– volume: 37
  start-page: 46
  year: 2017
  end-page: 52
  ident: CR103
  article-title: Cross-conjugated oligomeric quinones for high performance organic batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.055
– volume: 56
  start-page: 2909
  year: 2017
  end-page: 2913
  ident: CR66
  article-title: Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700148
– volume: 6
  start-page: 2280
  year: 2013
  end-page: 2301
  ident: CR53
  article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40709h
– volume: 139
  start-page: 4258
  year: 2017
  end-page: 4261
  ident: CR140
  article-title: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 114
  start-page: 11414
  year: 2014
  end-page: 11443
  ident: CR7
  article-title: Ultimate limits to intercalation reactions for lithium batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003003
– volume: 2
  start-page: 6747
  year: 2014
  end-page: 6754
  ident: CR94
  article-title: A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4-diylidenes: a new positive electrode material for rechargeable batteries utilizing ten electron redox
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14920j
– volume: 4
  start-page: 1330
  year: 2013
  end-page: 1337
  ident: CR118
  article-title: Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc22093a
– volume: 12
  start-page: 4093
  year: 2019
  end-page: 4115
  ident: CR13
  article-title: Sustainable energy storage: recent trends and developments toward fully organic batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901545
– volume: 137
  start-page: 3124
  year: 2015
  end-page: 3130
  ident: CR168
  article-title: Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00336
– volume: 16
  start-page: 3329
  year: 2016
  end-page: 3334
  ident: CR135
  article-title: Understanding the size-dependent sodium storage properties of Na C O -based organic electrodes for sodium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00954
– volume: 30
  start-page: 1703868
  year: 2018
  ident: CR163
  article-title: A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703868
– volume: 56
  start-page: 10145
  year: 2011
  end-page: 10150
  ident: CR122
  article-title: A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.115
– volume: 29
  start-page: 1906436
  year: 2019
  ident: CR55
  article-title: π-Conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906436
– volume: 1
  start-page: 16141
  year: 2016
  ident: CR72
  article-title: A solid future for battery development
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 51
  start-page: 5798
  year: 2012
  end-page: 5800
  ident: CR3
  article-title: The birth of the lithium-ion battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105006
– volume: 17
  start-page: 873
  year: 1972
  end-page: 887
  ident: CR23
  article-title: Investigation into the use of quinone compounds for battery cathodes
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(72)90010-2
– volume: 51
  start-page: 697
  year: 2015
  end-page: 699
  ident: CR149
  article-title: An exceptionally stable functionalized metal–organic framework for lithium storage
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07149B
– volume: 1
  start-page: 229
  year: 2017
  end-page: 243
  ident: CR11
  article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.019
– volume: 137
  start-page: 750
  year: 1990
  end-page: 759
  ident: CR35
  article-title: Electrode kinetics of organodisulfide cathodes for storage batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086549
– volume: 31
  start-page: 1901640
  year: 2019
  ident: CR155
  article-title: High-lithium-affinity chemically exfoliated 2D covalent organic frameworks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901640
– volume: 27
  start-page: 5141
  year: 2015
  end-page: 5146
  ident: CR162
  article-title: Organic-catholyte-containing flexible rechargeable lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502329
– volume: 5
  start-page: 3086
  year: 2014
  end-page: 3092
  ident: CR63
  article-title: The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li C O , using combined experimental and first principle studies
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501557n
– volume: 64
  start-page: 103949
  year: 2019
  ident: CR88
  article-title: Core-shell nanostructured organic redox polymer cathodes with superior performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103949
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4302
  ident: CR2
  article-title: Lithium batteries and cathode materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 2
  start-page: 1500018
  year: 2015
  ident: CR113
  article-title: High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500018
– ident: CR156
– volume: 16
  start-page: 236
  year: 2019
  end-page: 242
  ident: CR93
  article-title: Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.005
– volume: 29
  start-page: 1901730
  year: 2019
  ident: CR80
  article-title: A comprehensive understanding of lithium–sulfur battery technology
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901730
– volume: 12
  start-page: 2205
  year: 2012
  end-page: 2211
  ident: CR115
  article-title: Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl2039666
– volume: 109
  start-page: 3971
  year: 2005
  end-page: 3978
  ident: CR54
  article-title: Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040552u
– ident: CR6
– volume: 136
  start-page: 16461
  year: 2014
  end-page: 16464
  ident: CR120
  article-title: All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507852t
– volume: 109
  start-page: 3458
  year: 2008
  end-page: 3460
  ident: CR152
  article-title: Influence of DC conductivity of PPy anode on Li/PPy secondary batteries
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.28470
– volume: 9
  year: 2018
  ident: CR52
  article-title: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02889-7
– volume: 55
  start-page: 10662
  year: 2016
  end-page: 10666
  ident: CR86
  article-title: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604519
– volume: 28
  start-page: 2408
  year: 2016
  end-page: 2416
  ident: CR106
  article-title: Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00624
– volume: 359
  start-page: 351
  year: 2002
  end-page: 354
  ident: CR33
  article-title: Rechargeable batteries with organic radical cathodes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00705-4
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  ident: CR73
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 3
  start-page: 146
  year: 2014
  end-page: 163
  ident: CR146
  article-title: Fundamental scientific aspects of lithium batteries (VIII) — anode electrode materials
  publication-title: Energy Storage Sci. Technol.
– volume: 40
  start-page: 750
  year: 2011
  end-page: 752
  ident: CR42
  article-title: High-performance lithium secondary batteries using cathode active materials of triquinoxalinylenes exhibiting six electron migration
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2011.750
– volume: 3
  start-page: 600
  year: 2013
  end-page: 605
  ident: CR99
  article-title: Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200947
– volume: 3
  start-page: 53
  year: 2014
  end-page: 65
  ident: CR145
  article-title: Fundamental scientific aspects of lithium batteries (VII) — positive electrode materials
  publication-title: Energy Storage Sci. Technol.
– volume: 1
  start-page: 1600032
  year: 2017
  ident: CR139
  article-title: From an enhanced understanding to commercially viable electrodes: the case of PTCLi as sustainable organic lithium-ion anode material
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201600032
– volume: 4
  start-page: 2786
  year: 2018
  end-page: 2813
  ident: CR126
  article-title: Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.09.005
– volume: 13
  start-page: 1379
  year: 2018
  end-page: 1385
  ident: CR77
  article-title: Nafion/titanium dioxide-coated lithium anode for stable lithium–sulfur batteries
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800326
– volume: 121
  start-page: 14498
  year: 2017
  end-page: 14506
  ident: CR164
  article-title: Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04341
– volume: 162
  start-page: A2393
  year: 2015
  end-page: A2405
  ident: CR169
  article-title: Review — advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0031514jes
– volume: 10
  start-page: 552
  year: 2017
  end-page: 557
  ident: CR47
  article-title: High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03185D
– volume: 5
  year: 2014
  ident: CR101
  article-title: Biologically inspired pteridine redox centres for rechargeable batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6335
– ident: CR159
– volume: 2
  start-page: 861
  year: 2017
  end-page: 868
  ident: CR65
  article-title: High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0014-y
– volume: 1
  start-page: 33
  year: 1990
  end-page: 39
  ident: CR29
  article-title: Development of polyaniline–lithium secondary battery
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1990.220010106
– volume: 15
  start-page: 16
  year: 2019
  end-page: 27
  ident: CR87
  article-title: A metal-free battery with pure ionic liquid electrolyte
  publication-title: iScience
  doi: 10.1016/j.isci.2019.04.010
– volume: 56
  start-page: 12561
  year: 2017
  end-page: 12565
  ident: CR104
  article-title: An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706604
– volume: 8
  start-page: 1703509
  year: 2018
  ident: CR108
  article-title: Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703509
– volume: 89
  start-page: 222
  year: 2016
  end-page: 230
  ident: CR143
  article-title: Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.05.029
– volume: 7
  start-page: 1701316
  year: 2017
  ident: CR167
  article-title: Twisted perylene diimides with tunable redox properties for organic sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701316
– volume: 2
  start-page: 1690
  year: 2018
  end-page: 1706
  ident: CR61
  article-title: Positioning organic electrode materials in the battery landscape
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.008
– volume: 140
  start-page: 1049
  year: 2018
  end-page: 1056
  ident: CR18
  article-title: Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11272
– volume: 16
  start-page: 578
  year: 1977
  end-page: 580
  ident: CR24
  article-title: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39770000578
– volume: 58
  start-page: 7020
  year: 2019
  end-page: 7024
  ident: CR38
  article-title: Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902185
– volume: 221
  start-page: 14
  year: 2016
  end-page: 22
  ident: CR114
  article-title: Enhanced electrochemical performance and thermal stability of LiNi Co Al O via nano-sized LiMnPO coating
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.158
– volume: 115
  start-page: 2004
  year: 2018
  end-page: 2009
  ident: CR45
  article-title: Azo compounds as a family of organic electrode materials for alkali-ion batteries
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717892115
– volume: 62
  start-page: 533
  year: 2019
  end-page: 548
  ident: CR79
  article-title: Recent progress on lithium-ion batteries with high electrochemical performance
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-018-9410-0
– volume: 20
  start-page: 462
  year: 2019
  end-page: 469
  ident: CR92
  article-title: Charge-transfer complexes for high-power organic rechargeable batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.001
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  ident: CR128
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0405-3
– volume: 10
  start-page: 6398
  year: 2018
  end-page: 6406
  ident: CR148
  article-title: Transition-metal triggered high-efficiency lithium ion storage via coordination interactions with redox-active croconate in one-dimensional metal–organic anode materials
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18758
– volume: 10
  start-page: 21084
  year: 2018
  end-page: 21090
  ident: CR40
  article-title: A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06803
– volume: 7
  start-page: 1602279
  year: 2017
  ident: CR105
  article-title: Tattooing dye as a green electrode material for lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602279
– volume: 52
  start-page: 2290
  year: 2019
  end-page: 2300
  ident: CR31
  article-title: Organosulfides: an emerging class of cathode materials for rechargeable lithium batteries
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00231
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: CR76
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 18
  start-page: 205
  year: 2015
  end-page: 211
  ident: CR59
  article-title: Organic electrode for non-aqueous potassium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.015
– volume: 1
  start-page: 348
  year: 2008
  end-page: 355
  ident: CR21
  article-title: From biomass to a renewable Li C O organic electrode for sustainable Li-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200700161
– volume: 71
  start-page: 1506
  year: 1979
  end-page: 1507
  ident: CR25
  article-title: Highly conducting charge-transfer complexes of poly( -phenylene)
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438420
– volume: 6
  start-page: 1501780
  year: 2016
  ident: CR110
  article-title: Stable Li–organic batteries with Nafion-based sandwich-type separators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501780
– volume: 31
  start-page: 1903955
  year: 2019
  ident: CR125
  article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903955
– ident: CR75
– volume: 105
  start-page: 143904
  year: 2014
  ident: CR132
  article-title: High-rate performance of ferroelectric BaTiO -coated LiCoO for Li-ion batteries
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4898006
– volume: 1
  start-page: 204
  year: 2018
  ident: CR1
  article-title: How we made the Li-ion rechargeable battery
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0048-6
– volume: 56
  start-page: 13026
  year: 2017
  end-page: 13030
  ident: CR67
  article-title: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707473
– ident: CR157
– volume: 54
  start-page: 7354
  year: 2015
  end-page: 7358
  ident: CR85
  article-title: Pushing up lithium storage through nanostructured polyazaacene analogues as anode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503072
– volume: 319
  start-page: 737
  year: 2008
  end-page: 738
  ident: CR161
  article-title: Toward flexible batteries
  publication-title: Science
  doi: 10.1126/science.1151831
– volume: 7
  start-page: 13836
  year: 2019
  end-page: 13844
  ident: CR19
  article-title: Made from henna! A fast-charging, high-capacity, and recyclable tetrakislawsone cathode material for lithium ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01800
– volume: 7
  start-page: 14321
  year: 2019
  end-page: 14340
  ident: CR28
  article-title: Tunable conducting polymers: toward sustainable and versatile batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02315
– volume: 5
  start-page: 1391
  year: 2018
  end-page: 1396
  ident: CR49
  article-title: High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00197A
– volume: 21
  start-page: 1627
  year: 2009
  end-page: 1630
  ident: CR124
  article-title: Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803073
– volume: 177
  start-page: 199
  year: 2008
  end-page: 204
  ident: CR151
  article-title: Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.086
– volume: 18
  start-page: 69
  year: 2019
  end-page: 75
  ident: CR14
  article-title: Real-time insight into the doping mechanism of redox-active organic radical polymers
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0215-1
– ident: CR81
– volume: 26
  start-page: 2558
  year: 2014
  end-page: 2565
  ident: CR102
  article-title: Organic nanohybrids for fast and sustainable energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305005
– volume: 9
  year: 2018
  ident: CR62
  article-title: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03114-1
– volume: 190
  start-page: 185
  year: 1990
  end-page: 195
  ident: CR142
  article-title: Solid redox polymerization electrodes and their use in all-solid-state batteries
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 131
  start-page: 57
  year: 1984
  end-page: 63
  ident: CR32
  article-title: Cathode characteristics of organic electron acceptors for lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115542
– volume: 8
  start-page: 280
  year: 2008
  end-page: 282
  ident: CR36
  article-title: A novel coordination polymer as positive electrode material for lithium ion battery
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070386q
– volume: 51
  start-page: 5147
  year: 2012
  end-page: 5151
  ident: CR43
  article-title: How many lithium ions can be inserted onto fused C aromatic ring systems?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201109187
– volume: 57
  start-page: 9443
  year: 2018
  end-page: 9446
  ident: CR78
  article-title: A microporous covalent–organic framework with abundant accessible carbonyl groups for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805540
– volume: 3
  start-page: 1050
  year: 2017
  end-page: 1062
  ident: CR136
  article-title: Self-healing chemistry between organic material and binder for stable sodium-ion batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.004
– volume: 58
  start-page: 8468
  year: 2019
  end-page: 8473
  ident: CR84
  article-title: Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903152
– volume: 110
  start-page: 20912
  year: 2013
  end-page: 20917
  ident: CR160
  article-title: Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1314345110
– volume: 10
  start-page: 418
  year: 2019
  end-page: 426
  ident: CR170
  article-title: A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02995D
– year: 2019
  ident: CR56
  article-title: Synthesis and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.11.020
– volume: 4
  start-page: 1400554
  year: 2014
  ident: CR58
  article-title: An organic pigment as a high-performance cathode for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400554
– volume: 35
  start-page: 1367
  year: 2014
  end-page: 1371
  ident: CR90
  article-title: Poly(exTTF): a novel redox-active polymer as active material for Li-organic batteries
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201400167
– volume: 137
  start-page: 4956
  year: 2015
  end-page: 4959
  ident: CR133
  article-title: Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02290
– volume: 28
  start-page: 1920
  year: 2016
  end-page: 1926
  ident: CR44
  article-title: Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00267
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: CR12
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 55
  start-page: 10856
  year: 2019
  end-page: 10859
  ident: CR46
  article-title: A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05679C
– volume: 743
  start-page: 763
  year: 2018
  end-page: 772
  ident: CR95
  article-title: Concentration-controlled morphology of LiFePO crystals with an exposed (100) facet and their enhanced performance for use in lithium-ion batteries
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.02.048
– volume: 55
  start-page: 12528
  year: 2016
  end-page: 12532
  ident: CR131
  article-title: Oxocarbon salts for fast rechargeable batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607194
– volume: 6
  start-page: 2905
  year: 2011
  end-page: 2911
  ident: CR100
  article-title: 5,7,12,14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries
  publication-title: Int. J. Electrochem. Sci.
– volume: 278
  start-page: 574
  year: 2015
  end-page: 581
  ident: CR91
  article-title: Facile synthesis of LiMn O octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.082
– volume: 6
  start-page: 2546
  year: 2014
  end-page: 2552
  ident: CR97
  article-title: Improvement of the cycling performance of LiNi Co Mn O cathode active materials by a dual-conductive polymer coating
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404965p
– volume: 2
  start-page: 1500124
  year: 2015
  ident: CR109
  article-title: Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500124
– volume: 4
  start-page: 51
  year: 2019
  end-page: 59
  ident: CR16
  article-title: Rechargeable aluminium organic batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0291-0
– volume: 52
  start-page: 9162
  year: 2013
  end-page: 9166
  ident: CR121
  article-title: Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201302586
– volume: 10
  start-page: 4245
  year: 2017
  end-page: 4255
  ident: CR107
  article-title: Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1580-9
– volume: 10
  start-page: 7982
  year: 2018
  end-page: 7988
  ident: CR41
  article-title: New spin on organic radical batteries — an isoindoline nitroxide-based high-voltage cathode material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18252
– volume: 135
  start-page: 2905
  year: 1988
  end-page: 2909
  ident: CR30
  article-title: Ionic conductivity of organosulfur melts for advanced storage electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095460
– ident: CR127
– volume: 141
  start-page: 9623
  year: 2019
  end-page: 9628
  ident: CR138
  article-title: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03467
– volume: 15
  start-page: 1805061
  year: 2019
  ident: CR15
  article-title: Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes
  publication-title: Small
  doi: 10.1002/smll.201805061
– volume: 176
  start-page: 151
  year: 2016
  end-page: 154
  ident: CR83
  article-title: Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.04.073
– volume: 7
  start-page: 23378
  year: 2019
  end-page: 23415
  ident: CR17
  article-title: Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05252F
– volume: 8
  start-page: 22762
  year: 2016
  end-page: 22767
  ident: CR39
  article-title: Perylene-based all-organic redox battery with excellent cycling stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07591
– volume: 77
  start-page: 2203
  year: 2004
  end-page: 2204
  ident: CR34
  article-title: Electron-transfer kinetics of nitroxide radicals as an electrode-active material
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.77.2203
– volume: 2
  start-page: 17074
  year: 2017
  ident: CR98
  article-title: Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.74
– volume: 1
  start-page: 522
  year: 2017
  end-page: 547
  ident: CR60
  article-title: Advances in structure and property optimizations of battery electrode materials
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.001
– volume: 30
  start-page: 3874
  year: 2018
  end-page: 3881
  ident: CR137
  article-title: Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01317
– volume: 19
  start-page: 1616
  year: 2007
  end-page: 1621
  ident: CR57
  article-title: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
– volume: 382
  start-page: 176
  year: 2018
  end-page: 178
  ident: CR71
  article-title: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.039
– volume: 10
  start-page: 344
  year: 2014
  end-page: 352
  ident: CR82
  article-title: Building flexible Li Ti O /CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.012
– volume: 6
  start-page: 19182
  year: 2018
  end-page: 19189
  ident: CR117
  article-title: An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07097K
– volume: 3
  start-page: 18013
  year: 2018
  ident: CR9
  article-title: A cost and resource analysis of sodium-ion batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 44
  start-page: 699
  year: 2015
  end-page: 728
  ident: CR8
  article-title: Nanostructured Mn-based oxides for electrochemical energy storage and conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00218K
– volume: 55
  start-page: 6428
  year: 2016
  end-page: 6432
  ident: CR112
  article-title: A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601119
– volume: 6
  start-page: 20564
  year: 2018
  end-page: 20620
  ident: CR150
  article-title: Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05336G
– volume: 54
  start-page: 13947
  year: 2015
  end-page: 13951
  ident: CR111
  article-title: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506673
– volume: 27
  start-page: 1644
  year: 2018
  end-page: 1650
  ident: CR130
  article-title: Core-shell structured 1,4-benzoquinone@TiO cathode for lithium batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.06.003
– volume: 7
  start-page: 317
  year: 1981
  ident: 160_CR26
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39810000317
– volume: 58
  start-page: 7020
  year: 2019
  ident: 160_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902185
– volume: 57
  start-page: 9443
  year: 2018
  ident: 160_CR78
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805540
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 160_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 141
  start-page: 9623
  year: 2019
  ident: 160_CR138
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03467
– volume: 17
  start-page: 873
  year: 1972
  ident: 160_CR23
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(72)90010-2
– volume: 7
  start-page: 14321
  year: 2019
  ident: 160_CR28
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02315
– volume: 54
  start-page: 7354
  year: 2015
  ident: 160_CR85
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503072
– volume: 2
  start-page: 1500124
  year: 2015
  ident: 160_CR109
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500124
– volume: 6
  start-page: 19182
  year: 2018
  ident: 160_CR117
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07097K
– volume: 18
  start-page: 69
  year: 2019
  ident: 160_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0215-1
– volume: 2
  start-page: 17074
  year: 2017
  ident: 160_CR98
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.74
– volume: 278
  start-page: 574
  year: 2015
  ident: 160_CR91
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.082
– volume: 109
  start-page: 3971
  year: 2005
  ident: 160_CR54
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040552u
– volume: 21
  start-page: 1627
  year: 2009
  ident: 160_CR124
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803073
– volume: 4
  start-page: 1330
  year: 2013
  ident: 160_CR118
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc22093a
– volume: 2
  start-page: 1690
  year: 2018
  ident: 160_CR61
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.008
– volume: 16
  start-page: 578
  year: 1977
  ident: 160_CR24
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39770000578
– volume: 1
  start-page: 16141
  year: 2016
  ident: 160_CR72
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 89
  start-page: 222
  year: 2016
  ident: 160_CR143
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.05.029
– volume: 3
  start-page: 1050
  year: 2017
  ident: 160_CR136
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.004
– volume: 9
  year: 2018
  ident: 160_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03114-1
– volume: 319
  start-page: 737
  year: 2008
  ident: 160_CR161
  publication-title: Science
  doi: 10.1126/science.1151831
– volume: 15
  start-page: 1805061
  year: 2019
  ident: 160_CR15
  publication-title: Small
  doi: 10.1002/smll.201805061
– volume: 12
  start-page: 2205
  year: 2012
  ident: 160_CR115
  publication-title: Nano Lett.
  doi: 10.1021/nl2039666
– volume: 136
  start-page: 16461
  year: 2014
  ident: 160_CR120
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507852t
– volume: 28
  start-page: 1920
  year: 2016
  ident: 160_CR44
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00267
– volume: 12
  start-page: 3788
  year: 2000
  ident: 160_CR96
  publication-title: Chem. Mater.
  doi: 10.1021/cm000511k
– volume: 162
  start-page: A2393
  year: 2015
  ident: 160_CR169
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0031514jes
– year: 2019
  ident: 160_CR56
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.11.020
– volume: 6
  start-page: 1501780
  year: 2016
  ident: 160_CR110
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501780
– volume: 104
  start-page: 4271
  year: 2004
  ident: 160_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 64
  start-page: 103949
  year: 2019
  ident: 160_CR88
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103949
– volume: 8
  start-page: 1703509
  year: 2018
  ident: 160_CR108
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703509
– volume: 1
  start-page: 348
  year: 2008
  ident: 160_CR21
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200700161
– volume: 9
  year: 2018
  ident: 160_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02889-7
– ident: 160_CR75
– volume: 3
  start-page: 267
  year: 2018
  ident: 160_CR73
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 6
  start-page: 20564
  year: 2018
  ident: 160_CR150
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05336G
– volume: 35
  start-page: 1367
  year: 2014
  ident: 160_CR90
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201400167
– volume: 161
  start-page: A6
  year: 2014
  ident: 160_CR144
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.015401jes
– volume: 8
  start-page: 22762
  year: 2016
  ident: 160_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07591
– volume: 743
  start-page: 763
  year: 2018
  ident: 160_CR95
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.02.048
– volume: 10
  start-page: 6398
  year: 2018
  ident: 160_CR148
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18758
– volume: 5
  start-page: 1391
  year: 2018
  ident: 160_CR49
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00197A
– ident: 160_CR81
– volume: 137
  start-page: 4956
  year: 2015
  ident: 160_CR133
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02290
– volume: 3
  start-page: 146
  year: 2014
  ident: 160_CR146
  publication-title: Energy Storage Sci. Technol.
– ident: 160_CR159
– volume: 10
  start-page: 344
  year: 2014
  ident: 160_CR82
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.012
– volume: 6
  start-page: 2546
  year: 2014
  ident: 160_CR97
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404965p
– volume: 71
  start-page: 1506
  year: 1979
  ident: 160_CR25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438420
– volume: 30
  start-page: 3874
  year: 2018
  ident: 160_CR137
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01317
– volume: 1
  start-page: 229
  year: 2017
  ident: 160_CR11
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.019
– volume: 7
  start-page: 1701316
  year: 2017
  ident: 160_CR167
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701316
– volume: 137
  start-page: 750
  year: 1990
  ident: 160_CR35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086549
– volume: 139
  start-page: 13031
  year: 2017
  ident: 160_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06313
– ident: 160_CR74
– volume: 51
  start-page: 697
  year: 2015
  ident: 160_CR149
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07149B
– volume: 190
  start-page: 185
  year: 1990
  ident: 160_CR142
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 115
  start-page: 2004
  year: 2018
  ident: 160_CR45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717892115
– volume: 6
  start-page: 3134
  year: 2018
  ident: 160_CR119
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09968A
– volume: 51
  start-page: 5147
  year: 2012
  ident: 160_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201109187
– volume: 18
  start-page: 205
  year: 2015
  ident: 160_CR59
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.015
– volume: 13
  start-page: 1379
  year: 2018
  ident: 160_CR77
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800326
– volume: 429
  start-page: 22
  year: 2019
  ident: 160_CR147
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.087
– volume: 19
  start-page: 1616
  year: 2007
  ident: 160_CR57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
– volume: 5
  start-page: 3086
  year: 2014
  ident: 160_CR63
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501557n
– volume: 559
  start-page: 467
  year: 2018
  ident: 160_CR10
  publication-title: Nature
  doi: 10.1038/d41586-018-05752-3
– volume: 58
  start-page: 16764
  year: 2019
  ident: 160_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906844
– volume: 6
  start-page: 10870
  year: 2014
  ident: 160_CR165
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405470p
– volume: 2
  start-page: 861
  year: 2017
  ident: 160_CR65
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0014-y
– volume: 8
  start-page: 1802151
  year: 2018
  ident: 160_CR89
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802151
– volume: 52
  start-page: 9162
  year: 2013
  ident: 160_CR121
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201302586
– volume: 507
  start-page: 26
  year: 2014
  ident: 160_CR4
  publication-title: Nature
  doi: 10.1038/507026a
– volume: 4
  start-page: 1400554
  year: 2014
  ident: 160_CR58
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400554
– volume: 37
  start-page: 46
  year: 2017
  ident: 160_CR103
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.055
– volume: 27
  start-page: 5141
  year: 2015
  ident: 160_CR162
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502329
– volume: 221
  start-page: 14
  year: 2016
  ident: 160_CR114
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.158
– volume: 8
  start-page: 280
  year: 2008
  ident: 160_CR36
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070386q
– volume: 7
  start-page: 13836
  year: 2019
  ident: 160_CR19
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01800
– volume: 359
  start-page: 351
  year: 2002
  ident: 160_CR33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00705-4
– volume: 29
  start-page: 1906436
  year: 2019
  ident: 160_CR55
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906436
– volume: 15
  start-page: 16
  year: 2019
  ident: 160_CR87
  publication-title: iScience
  doi: 10.1016/j.isci.2019.04.010
– volume: 55
  start-page: 10027
  year: 2016
  ident: 160_CR123
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603897
– volume: 6
  start-page: 111
  year: 2018
  ident: 160_CR154
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04645F
– volume: 30
  start-page: 1703868
  year: 2018
  ident: 160_CR163
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703868
– volume: 1
  start-page: 204
  year: 2018
  ident: 160_CR1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0048-6
– volume: 52
  start-page: 2290
  year: 2019
  ident: 160_CR31
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00231
– volume: 7
  start-page: 1602279
  year: 2017
  ident: 160_CR105
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602279
– volume: 3
  start-page: 18013
  year: 2018
  ident: 160_CR9
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 10
  start-page: 21084
  year: 2018
  ident: 160_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06803
– volume: 9
  start-page: 3671
  year: 2019
  ident: 160_CR141
  publication-title: Appl. Sci.
  doi: 10.3390/app9183671
– volume: 135
  start-page: 2905
  year: 1988
  ident: 160_CR30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095460
– volume: 1
  start-page: 33
  year: 1990
  ident: 160_CR29
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1990.220010106
– volume: 55
  start-page: 10662
  year: 2016
  ident: 160_CR86
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604519
– volume: 3
  start-page: 53
  year: 2014
  ident: 160_CR145
  publication-title: Energy Storage Sci. Technol.
– volume: 56
  start-page: 13026
  year: 2017
  ident: 160_CR67
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707473
– volume: 14
  start-page: 200
  year: 2019
  ident: 160_CR69
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0371-8
– ident: 160_CR157
– volume: 58
  start-page: 8468
  year: 2019
  ident: 160_CR84
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903152
– volume: 137
  start-page: 3124
  year: 2015
  ident: 160_CR168
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00336
– volume: 116
  start-page: 2
  year: 1969
  ident: 160_CR22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2411755
– ident: 160_CR6
– volume: 29
  start-page: 1901730
  year: 2019
  ident: 160_CR80
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901730
– volume: 31
  start-page: 1901640
  year: 2019
  ident: 160_CR155
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901640
– volume: 1
  start-page: 522
  year: 2017
  ident: 160_CR60
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.001
– volume: 1
  year: 2015
  ident: 160_CR64
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500330
– volume: 117
  start-page: 10403
  year: 2017
  ident: 160_CR76
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 451
  start-page: 652
  year: 2008
  ident: 160_CR12
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 140
  start-page: 1049
  year: 2018
  ident: 160_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11272
– volume: 10
  start-page: 7982
  year: 2018
  ident: 160_CR41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18252
– volume: 20
  start-page: 462
  year: 2019
  ident: 160_CR92
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.001
– volume: 4
  start-page: 51
  year: 2019
  ident: 160_CR16
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0291-0
– volume: 55
  start-page: 6428
  year: 2016
  ident: 160_CR112
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601119
– volume: 109
  start-page: 3458
  year: 2008
  ident: 160_CR152
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.28470
– ident: 160_CR129
– volume: 51
  start-page: 5798
  year: 2012
  ident: 160_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105006
– volume: 6
  start-page: 2280
  year: 2013
  ident: 160_CR53
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40709h
– volume: 62
  start-page: 533
  year: 2019
  ident: 160_CR79
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-018-9410-0
– ident: 160_CR158
– volume: 77
  start-page: 2203
  year: 2004
  ident: 160_CR34
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.77.2203
– volume: 6
  start-page: 2905
  year: 2011
  ident: 160_CR100
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)18227-7
– volume: 5
  start-page: 555
  year: 2003
  ident: 160_CR153
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(03)00121-8
– volume: 114
  start-page: 11414
  year: 2014
  ident: 160_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003003
– volume: 6
  start-page: 1902129
  year: 2019
  ident: 160_CR51
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902129
– volume: 3
  start-page: 279
  year: 2018
  ident: 160_CR70
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 2
  start-page: 1500018
  year: 2015
  ident: 160_CR113
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500018
– volume: 139
  start-page: 4258
  year: 2017
  ident: 160_CR140
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 2
  start-page: 6747
  year: 2014
  ident: 160_CR94
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14920j
– volume: 1
  start-page: 1600032
  year: 2017
  ident: 160_CR139
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201600032
– volume: 2
  start-page: 667
  year: 2016
  ident: 160_CR134
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 9
  year: 2018
  ident: 160_CR166
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06708-x
– volume: 16
  start-page: 3329
  year: 2016
  ident: 160_CR135
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00954
– volume: 26
  start-page: 2558
  year: 2014
  ident: 160_CR102
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305005
– volume: 7
  start-page: 23378
  year: 2019
  ident: 160_CR17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05252F
– volume: 121
  start-page: 14498
  year: 2017
  ident: 160_CR164
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04341
– volume: 4
  start-page: 2786
  year: 2018
  ident: 160_CR126
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.09.005
– volume: 44
  start-page: 699
  year: 2015
  ident: 160_CR8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00218K
– volume: 8
  start-page: 120
  year: 2009
  ident: 160_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2372
– volume: 16
  start-page: 236
  year: 2019
  ident: 160_CR93
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.005
– volume: 105
  start-page: 143904
  year: 2014
  ident: 160_CR132
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4898006
– volume: 28
  start-page: 2408
  year: 2016
  ident: 160_CR106
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00624
– volume: 3
  start-page: 600
  year: 2013
  ident: 160_CR99
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200947
– volume: 110
  start-page: 20912
  year: 2013
  ident: 160_CR160
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1314345110
– ident: 160_CR127
– volume: 56
  start-page: 10145
  year: 2011
  ident: 160_CR122
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.115
– volume: 31
  start-page: 1903955
  year: 2019
  ident: 160_CR125
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903955
– volume: 97
  start-page: 207
  year: 1997
  ident: 160_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/cr941181o
– volume: 382
  start-page: 176
  year: 2018
  ident: 160_CR71
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.039
– volume: 176
  start-page: 151
  year: 2016
  ident: 160_CR83
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.04.073
– ident: 160_CR156
– volume: 31
  start-page: 1901808
  year: 2019
  ident: 160_CR171
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901808
– volume: 30
  start-page: 3508
  year: 2018
  ident: 160_CR116
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01304
– volume: 55
  start-page: 10856
  year: 2019
  ident: 160_CR46
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05679C
– volume: 9
  year: 2018
  ident: 160_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07599-8
– volume: 27
  start-page: 1644
  year: 2018
  ident: 160_CR130
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.06.003
– volume: 12
  start-page: 4093
  year: 2019
  ident: 160_CR13
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901545
– volume: 55
  start-page: 12528
  year: 2016
  ident: 160_CR131
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607194
– volume: 177
  start-page: 199
  year: 2008
  ident: 160_CR151
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.086
– volume: 10
  start-page: 418
  year: 2019
  ident: 160_CR170
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02995D
– volume: 4
  start-page: 540
  year: 2019
  ident: 160_CR128
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0405-3
– volume: 54
  start-page: 13947
  year: 2015
  ident: 160_CR111
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506673
– volume: 56
  start-page: 12561
  year: 2017
  ident: 160_CR104
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706604
– volume: 10
  start-page: 4245
  year: 2017
  ident: 160_CR107
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1580-9
– volume: 30
  start-page: 1705644
  year: 2018
  ident: 160_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705644
– volume: 5
  year: 2014
  ident: 160_CR101
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6335
– volume: 56
  start-page: 2909
  year: 2017
  ident: 160_CR66
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700148
– volume: 40
  start-page: 750
  year: 2011
  ident: 160_CR42
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2011.750
– volume: 10
  start-page: 552
  year: 2017
  ident: 160_CR47
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03185D
– volume: 131
  start-page: 57
  year: 1984
  ident: 160_CR32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115542
SSID ssj0001934979
Score 2.6428673
SecondaryResourceType review_article
Snippet Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms 639/638/161
639/638/161/891
639/638/298/923/3931
706/4066/4068
Analytical Chemistry
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Commercialization
Electrode materials
Electrodes
Flux density
Gravimetry
Inorganic Chemistry
Lithium
Lithium batteries
Optimization
Organic Chemistry
Organic materials
Performance evaluation
Physical Chemistry
Review Article
Sustainability
Title Prospects of organic electrode materials for practical lithium batteries
URI https://link.springer.com/article/10.1038/s41570-020-0160-9
https://www.ncbi.nlm.nih.gov/pubmed/37128020
https://www.proquest.com/docview/2377423800
https://www.proquest.com/docview/2475007070
https://www.proquest.com/docview/2808587691
Volume 4
WOSCitedRecordID wos000513106500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2397-3358
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0001934979
  issn: 2397-3358
  databaseCode: M7S
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2397-3358
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0001934979
  issn: 2397-3358
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2397-3358
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0001934979
  issn: 2397-3358
  databaseCode: M2P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwEB1B2cNe-BC7S6FURuLEyiKxnTg-IUAgDlBVfKx6i2LHEUjQQNPy-xknTivEwoVLpMiONbLHfi8eex7AvraKOU0cGmjDqUDMoxpRmUZKRzpTkbF1Lr1_l3IwSEYjNfQbbpU_VtmuifVCnZfG7ZEfMi5dUBH5zdHzC3WqUS666iU0lmHFZSoTHVg5ORsMrxe7LIoLJVUbzuTJYYWI5bRWmDuPFQdUvQekDyzzQ4S0Bp7zte-avA6rnnKS48ZHNmDJjjfhYjgp61uWFSkL0mg7GeJFcXJLkMg2vkmQ1RJ_lwpbQdZ-_zB7IrrOy4m_2b_g7vzs9vSCelUFakQcT2ksQs2sQpyPeZYUHBmKRVph8jxKbC6kDgxyEquz3Aah4UnOdM6KsODIZer8eb-hMy7HdgsIC7NMRkWBHW2EC8lmGTcxF5ZbiwuH7ELQdm1qfMpxp3zxmNahb56kzWikOBqpG41UdeFg_slzk2_jq8q9tuNTP_WqdNHr_y8WyJFcjiMs3psX45xygZJsbMsZ1kmQiCJMqLALfxo3mBvDJSI6mtCFv61fLBr_1NLtry3dgZ-s9kh3tq0HnelkZnfhh3mdPlSTPizLUdL3ro1vV2zonvLmDUnb_2o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvBcRroYCR4AKymtjOwweEEFBt1e1qDwX1ZmJnIlaim7LZbdU_xW9k7CS7QoXeeuBsxxrlm5lv7LFnAF5Z1ML3xOGRdZIr4jxuiZV5om1iC504DLX0vo6y8Tg_PtaTDfjVv4Xx1yp7nxgcdVk7f0a-K2Tmk4oU37w__cl91yifXe1baLRqcYAX57Rla97tfyJ8Xwux9_no45B3XQW4U2m64KmKrUBNPJfKIq8kMTQSrbqyTHIsVWYjR5yMtigxip3MS2FLUcWVJC4P9eNo3RtwU9FOyNvVoZisz3S0VDrTffJU5rsN8aPv7CL87a804vpP-rsU017Kxwaa27vzv_2gu7DdBdTsQ2sB92ADZ_dhOJnX4Q1pw-qKtZ2rHOta_pTIKExvLY9RzM66l2K0Cu1Jvk-XJ8yGqqNTbB7Al2sR_iFszuoZPgYm4qLIkqoiYJ3yCeeikC6VCiUiucVsAFEPpXFdQXXf1-OHCYl9mZsWfUPoG4--0QN4s_rktK0mctXknR5o0zmWxqxR_vuwogjQV3Ci4ZerYfIYPg1UzLBe0pycwmwiQR0P4FGrdithZEbxCokwgLe9Hq4X_6ekT66W9AXcHh4djsxof3zwFLZEsAZ_i28HNhfzJT6DW-5sMW3mz4M5Mfh23er5G24wV4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+organic+electrode+materials+for+practical+lithium+batteries&rft.jtitle=Nature+reviews.+Chemistry&rft.au=Lu%2C+Yong&rft.au=Chen%2C+Jun&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.eissn=2397-3358&rft.volume=4&rft.issue=3&rft.spage=127&rft.epage=142&rft_id=info:doi/10.1038%2Fs41570-020-0160-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3358&client=summon