Evaluation of IR Biotyper for Lactiplantibacillus plantarum Typing and Its Application Potential in Probiotic Preliminary Screening

IR Biotyper (IRBT), which is a spectroscopic system for microorganism typing based on Fourier transform infrared (FTIR) technology, has been used to detect the spread of clones in clinical microbiology laboratories. However, the use of IRBT to detect probiotics has rarely been reported. Herein, we e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in microbiology Ročník 13; s. 823120
Hlavní autoři: Li, Xiaoqiong, Zhu, Liying, Wang, Xin, Li, Jinjun, Tang, Biao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 24.03.2022
Témata:
ISSN:1664-302X, 1664-302X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:IR Biotyper (IRBT), which is a spectroscopic system for microorganism typing based on Fourier transform infrared (FTIR) technology, has been used to detect the spread of clones in clinical microbiology laboratories. However, the use of IRBT to detect probiotics has rarely been reported. Herein, we evaluated the discriminatory power of IRBT to type Lactiplantibacillus plantarum isolates at the strain level and explored its application potential in probiotic preliminary selection. Twenty Lactiplantibacillus isolates collected from pickled radishes during successive fermentation were used to test the robustness of IRBT at the strain level. IRBT was then compared with genotyping methods such as whole-genome sequencing (WGS), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) to evaluate its discrimination power. IRBT distributed the 20 isolates into five clusters, with L. argentoratensis isolate C7-83 being the most distant from the other isolates, which belonged to L. plantarum . IRBT showed good reproducibility, although deviation in the discriminative power of IRBT was found at the strain level across laboratories, probably due to technical variance. All examined methods allowed bacterial identification at the strain level, but IRBT had higher discriminatory power than MLST and was comparable to the WGS and PFGE. In the phenotypic comparison study, we observed that the clustering results of probiotic physiological attributes (e.g., sensitivity to acid and bile salts, hydrophobicity of the cell surface, and resistance to antibiotics) were consistent with the typing results of IRBT. Our results indicated that IRBT is a robust tool for L. plantarum strain typing that could improve the efficiency of probiotic identification and preliminary screening, and can potentially be applied in probiotic traceability and quality control.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Teresa Zotta, University of Basilicata, Italy
Reviewed by: Michael Gänzle, University of Alberta, Canada; Prabhu B. Patil, Institute of Microbial Technology (CSIR), India
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2022.823120