A new upper bound for the 0-1 quadratic knapsack problem
The 0-1 quadratic knapsack problem (QKP) consists in maximizing a positive quadratic pseudo-Boolean function subject to a linear capacity constraint. We present in this paper a new method, based on Lagrangian decomposition, for computing an upper bound of QKP. We report computational experiments whi...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 112; číslo 3; s. 664 - 672 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.02.1999
Elsevier Elsevier Sequoia S.A |
| Edice: | European Journal of Operational Research |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The 0-1 quadratic knapsack problem (QKP) consists in maximizing a positive quadratic pseudo-Boolean function subject to a linear capacity constraint. We present in this paper a new method, based on Lagrangian decomposition, for computing an upper bound of QKP. We report computational experiments which demonstrate the sharpness of the bound (relative error very often less than 1%) for large size instances (up to 500 variables). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/S0377-2217(97)00414-1 |