Geometric Programming with Discrete Variables Subject to Max-Product Fuzzy Relation Constraints

The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete dynamics in nature and society Ročník 2018; číslo 2018; s. 1 - 8
Hlavní autoři: Yang, Xiao-Peng, Fang, Shu-Cherng, Cao, Bing-Yuan, Qin, Zejian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1026-0226, 1607-887X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We proposed a 0-1 mixed integer linear programming model and adopted the branch-and-bound scheme to solve the problem. Numerical experiments confirm that the proposed solution method is effective.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1026-0226
1607-887X
DOI:10.1155/2018/1610349