Geometric Programming with Discrete Variables Subject to Max-Product Fuzzy Relation Constraints
The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We...
Uloženo v:
| Vydáno v: | Discrete dynamics in nature and society Ročník 2018; číslo 2018; s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Wiley |
| Témata: | |
| ISSN: | 1026-0226, 1607-887X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We proposed a 0-1 mixed integer linear programming model and adopted the branch-and-bound scheme to solve the problem. Numerical experiments confirm that the proposed solution method is effective. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1026-0226 1607-887X |
| DOI: | 10.1155/2018/1610349 |