Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases
SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused...
Saved in:
| Published in: | Frontiers in immunology Vol. 11; p. 610300 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
16.12.2020
|
| Subjects: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in
64
adults with a spectrum of clinical presentations:
28
healthy SARS-CoV-2-negative contacts of COVID-19 cases;
20
asymptomatic SARS-CoV-2-infected cases;
eight
patients with Mild COVID-19 disease and
eight
cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response. |
|---|---|
| AbstractList | SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in
adults with a spectrum of clinical presentations:
healthy SARS-CoV-2-negative contacts of COVID-19 cases;
asymptomatic SARS-CoV-2-infected cases;
patients with Mild COVID-19 disease and
cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response. SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response. SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response. SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response. |
| Author | Zaffina, Salvatore Locatelli, Franco Nicastri, Emanuele Camisa, Vincenzo Concato, Carlo Mirabella, Mattia Santoro, Annapaola Cimini, Eleonora Vinci, Maria Rosaria Piano Mortari, Eva Onetti Muda, Andrea Maeurer, Markus Palomba, Patrizia Carsetti, Rita Porzio, Ottavia Raponi, Massimiliano Ippolito, Giuseppe Milito, Cinzia Capponi, Claudia Marchioni, Luisa Terreri, Sara Zumla, Alimuddin Quinti, Isabella Cuccaro, Ilaria Palmieri, Fabrizio Agrati, Chiara Corrente, Francesco Cascioli, Simona Palange, Paolo Quintarelli, Concetta |
| AuthorAffiliation | 6 Department of Public Health and Infectious Diseases Pulmonary Division, Policlinico Umberto I Hospital , Rome , Italy 7 Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy 1 B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) , Rome , Italy 8 Center for Clinical Microbiology, Division of Infection and Immunity, University College London , London , United Kingdom 15 Medical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy 21 Department of Pediatrics, Sapienza, University of Rome , Rome , Italy 11 Med Clinic, University of Mainz , Mainz , Germany 16 Department of Experimental Medicine, University of Rome Tor Vergata , Rome , Italy 10 Immunotherapy Programme, Champalimaud Foundation , Lisbon , Portugal 12 Cellular Immunology Laboratory, INMI L Spallanzani, IRCCS , Rome , Italy 3 Occupational Medicine/Health Technology Assessment and Safety Research Unit, |
| AuthorAffiliation_xml | – name: 7 Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy – name: 13 Clinical Department, INMI L Spallanzani, IRCCS , Rome , Italy – name: 1 B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) , Rome , Italy – name: 20 Department of Clinical Medicine and Surgery, University of Naples Federico II , Naples , Italy – name: 5 Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy – name: 11 Med Clinic, University of Mainz , Mainz , Germany – name: 3 Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCSS , Rome , Italy – name: 4 Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico , Rome , Italy – name: 10 Immunotherapy Programme, Champalimaud Foundation , Lisbon , Portugal – name: 8 Center for Clinical Microbiology, Division of Infection and Immunity, University College London , London , United Kingdom – name: 16 Department of Experimental Medicine, University of Rome Tor Vergata , Rome , Italy – name: 6 Department of Public Health and Infectious Diseases Pulmonary Division, Policlinico Umberto I Hospital , Rome , Italy – name: 14 Scientific Direction, INMI L Spallanzani, IRCCS , Rome , Italy – name: 12 Cellular Immunology Laboratory, INMI L Spallanzani, IRCCS , Rome , Italy – name: 9 NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust , London , United Kingdom – name: 2 Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy – name: 17 Virology Unit, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy – name: 21 Department of Pediatrics, Sapienza, University of Rome , Rome , Italy – name: 15 Medical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy – name: 19 Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS , Rome , Italy – name: 18 Department of Laboratories, Bambino Gesù Children’s Hospital , Rome , Italy |
| Author_xml | – sequence: 1 givenname: Rita surname: Carsetti fullname: Carsetti, Rita – sequence: 2 givenname: Salvatore surname: Zaffina fullname: Zaffina, Salvatore – sequence: 3 givenname: Eva surname: Piano Mortari fullname: Piano Mortari, Eva – sequence: 4 givenname: Sara surname: Terreri fullname: Terreri, Sara – sequence: 5 givenname: Francesco surname: Corrente fullname: Corrente, Francesco – sequence: 6 givenname: Claudia surname: Capponi fullname: Capponi, Claudia – sequence: 7 givenname: Patrizia surname: Palomba fullname: Palomba, Patrizia – sequence: 8 givenname: Mattia surname: Mirabella fullname: Mirabella, Mattia – sequence: 9 givenname: Simona surname: Cascioli fullname: Cascioli, Simona – sequence: 10 givenname: Paolo surname: Palange fullname: Palange, Paolo – sequence: 11 givenname: Ilaria surname: Cuccaro fullname: Cuccaro, Ilaria – sequence: 12 givenname: Cinzia surname: Milito fullname: Milito, Cinzia – sequence: 13 givenname: Alimuddin surname: Zumla fullname: Zumla, Alimuddin – sequence: 14 givenname: Markus surname: Maeurer fullname: Maeurer, Markus – sequence: 15 givenname: Vincenzo surname: Camisa fullname: Camisa, Vincenzo – sequence: 16 givenname: Maria Rosaria surname: Vinci fullname: Vinci, Maria Rosaria – sequence: 17 givenname: Annapaola surname: Santoro fullname: Santoro, Annapaola – sequence: 18 givenname: Eleonora surname: Cimini fullname: Cimini, Eleonora – sequence: 19 givenname: Luisa surname: Marchioni fullname: Marchioni, Luisa – sequence: 20 givenname: Emanuele surname: Nicastri fullname: Nicastri, Emanuele – sequence: 21 givenname: Fabrizio surname: Palmieri fullname: Palmieri, Fabrizio – sequence: 22 givenname: Chiara surname: Agrati fullname: Agrati, Chiara – sequence: 23 givenname: Giuseppe surname: Ippolito fullname: Ippolito, Giuseppe – sequence: 24 givenname: Ottavia surname: Porzio fullname: Porzio, Ottavia – sequence: 25 givenname: Carlo surname: Concato fullname: Concato, Carlo – sequence: 26 givenname: Andrea surname: Onetti Muda fullname: Onetti Muda, Andrea – sequence: 27 givenname: Massimiliano surname: Raponi fullname: Raponi, Massimiliano – sequence: 28 givenname: Concetta surname: Quintarelli fullname: Quintarelli, Concetta – sequence: 29 givenname: Isabella surname: Quinti fullname: Quinti, Isabella – sequence: 30 givenname: Franco surname: Locatelli fullname: Locatelli, Franco |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33391280$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1v1DAQhiNUREvpD-CCfOTQLI7t2MkFabV8rVSE1AWu1sQeF1eJHeLsSv33eHdb1CLhy1j2vM87mpmXxUmIAYvidUUXnDftO-eHYbtglNGFrCin9FlxVkkpSs6YOHl0Py0uUrql-YiWc16_KE5zaCvW0LMifPDO4YRhJusQYEYCwZKlhXH2OyTr7BGQXGMaY0iYyBzJZnm9KVfxZ8myxKGZfQwkOrJMd8M4xwFmby7JV9_bywNsg7tsQFaQ9a-K5w76hBf38bz48enj99WX8urb5_VqeVUaIeu5ZNJBA06atlGd6qTqWGOdAVvVANAKboBTWamaCWF4R01loZFUSOZkbZHz82J95NoIt3qc_ADTnY7g9eEhTjcaplxnjxoEQvYRPHdRAAqwKE0Fhit0vDNtZr0_ssZtN6A1uVcT9E-gT3-C_6Vv4k4rpZhQNAPe3gOm-HuLadaDTwb7HgLGbdI5qaZNXct93W8ee_01eRhYTlDHBDPFlCZ02vgZ9iPI1r7XFdX77dCH7dD77dDH7cjK6h_lA_z_mj-YCb6F |
| CitedBy_id | crossref_primary_10_1016_j_isci_2023_108572 crossref_primary_10_1016_j_ccc_2022_02_002 crossref_primary_10_1016_j_compbiomed_2024_109475 crossref_primary_10_1016_j_abst_2025_03_001 crossref_primary_10_1038_s41467_022_30913_4 crossref_primary_10_3389_fcimb_2023_1220012 crossref_primary_10_1038_s41598_021_94453_5 crossref_primary_10_3390_biomedicines10051002 crossref_primary_10_3390_nu15030488 crossref_primary_10_1016_j_hfc_2022_08_006 crossref_primary_10_1097_ACI_0000000000000789 crossref_primary_10_1016_j_ijid_2023_10_011 crossref_primary_10_1016_j_ijid_2021_10_010 crossref_primary_10_3389_fcell_2021_725606 crossref_primary_10_1097_INF_0000000000003413 crossref_primary_10_3389_fmed_2023_1271863 crossref_primary_10_3390_ijms22137017 crossref_primary_10_3389_fmed_2021_637642 crossref_primary_10_3390_molecules29102226 crossref_primary_10_1182_blood_2022017439 crossref_primary_10_3389_fimmu_2023_1101918 crossref_primary_10_1111_imr_13422 crossref_primary_10_1016_j_diagmicrobio_2021_115539 crossref_primary_10_3389_fimmu_2022_1095129 crossref_primary_10_1183_23120541_00789_2023 crossref_primary_10_3389_fmed_2021_717194 crossref_primary_10_1111_imr_13091 crossref_primary_10_1007_s11739_021_02706_y crossref_primary_10_3389_fimmu_2023_1127379 crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_1159_000525292 crossref_primary_10_3390_microorganisms10061250 crossref_primary_10_3389_fpubh_2023_1175444 crossref_primary_10_3390_jcm10194533 crossref_primary_10_1038_s41598_022_11157_0 crossref_primary_10_1128_spectrum_01108_24 crossref_primary_10_3390_ijms24031996 crossref_primary_10_1111_all_15112 crossref_primary_10_3390_children9050681 crossref_primary_10_3389_fimmu_2021_815404 crossref_primary_10_3389_fimmu_2022_1080897 crossref_primary_10_3390_vaccines10111846 crossref_primary_10_2196_52713 crossref_primary_10_1016_j_rdc_2024_09_001 crossref_primary_10_1093_infdis_jiab242 crossref_primary_10_1177_10815589231158041 crossref_primary_10_1096_fj_202100024R crossref_primary_10_1016_j_jaci_2023_01_022 crossref_primary_10_3390_diagnostics11101915 crossref_primary_10_1016_j_jtemb_2022_127055 crossref_primary_10_1080_0028825X_2024_2384453 crossref_primary_10_3389_fped_2022_883185 crossref_primary_10_1001_jamanetworkopen_2021_32563 crossref_primary_10_1007_s11845_022_03044_4 crossref_primary_10_1016_j_ijbiomac_2024_135201 crossref_primary_10_3389_fimmu_2023_1077236 crossref_primary_10_3390_cells10102541 crossref_primary_10_1038_s41598_025_85733_5 crossref_primary_10_1016_j_imbio_2023_152350 crossref_primary_10_3390_jcm11123419 crossref_primary_10_1007_s13337_022_00793_9 crossref_primary_10_1038_s41467_024_44905_z crossref_primary_10_3390_v15040906 crossref_primary_10_1016_j_intimp_2024_113934 crossref_primary_10_3390_pathogens12020329 crossref_primary_10_1186_s12985_022_01783_5 crossref_primary_10_1097_MCP_0000000000000775 crossref_primary_10_7759_cureus_33575 crossref_primary_10_3390_pathogens10091105 crossref_primary_10_1158_2326_6066_CIR_21_0675 crossref_primary_10_1371_journal_pone_0274611 crossref_primary_10_1016_j_heliyon_2023_e23583 crossref_primary_10_1038_s41598_024_59634_y crossref_primary_10_3390_vaccines11091462 crossref_primary_10_1016_j_diagmicrobio_2021_115586 crossref_primary_10_1002_cyto_a_24518 crossref_primary_10_3390_vaccines10020171 crossref_primary_10_1016_j_eimce_2021_01_009 crossref_primary_10_1093_oxfimm_iqab016 crossref_primary_10_1002_jmv_27290 crossref_primary_10_1016_j_jbc_2023_104955 crossref_primary_10_1016_j_ctim_2021_102788 crossref_primary_10_3389_fcimb_2021_655896 crossref_primary_10_1097_INF_0000000000003574 crossref_primary_10_1016_j_ccl_2022_03_006 crossref_primary_10_1007_s15010_022_01774_2 crossref_primary_10_1016_j_cytogfr_2022_10_003 crossref_primary_10_3389_fpsyg_2024_1473735 crossref_primary_10_3389_fmolb_2021_752616 crossref_primary_10_1111_pai_13737 crossref_primary_10_1002_cyto_a_24507 crossref_primary_10_3390_jcm11123352 crossref_primary_10_1002_cti2_1341 crossref_primary_10_1111_tan_15251 crossref_primary_10_1007_s10875_022_01256_y crossref_primary_10_3390_ijerph18158181 crossref_primary_10_3389_fimmu_2022_846753 crossref_primary_10_3390_ijms26020681 crossref_primary_10_1111_imm_13564 crossref_primary_10_1016_j_celrep_2024_114533 crossref_primary_10_1371_journal_pone_0262911 crossref_primary_10_3390_v13112261 crossref_primary_10_3390_ijms241713146 crossref_primary_10_1097_WCO_0000000000000929 crossref_primary_10_2217_fmb_2022_0006 crossref_primary_10_1080_21505594_2023_2218077 crossref_primary_10_1136_bmjpo_2021_001063 crossref_primary_10_1002_ajh_27119 crossref_primary_10_3390_vaccines8040739 crossref_primary_10_3389_fimmu_2022_1001198 crossref_primary_10_1016_j_jiph_2021_05_003 crossref_primary_10_3390_vaccines10071068 crossref_primary_10_3390_v14010085 crossref_primary_10_1016_j_ijid_2022_10_035 crossref_primary_10_1186_s12967_022_03751_7 crossref_primary_10_1016_j_csbj_2023_02_003 crossref_primary_10_12998_wjcc_v12_i16_2704 crossref_primary_10_1002_smi_3257 crossref_primary_10_1007_s10875_021_01133_0 crossref_primary_10_3389_fmed_2023_1230733 crossref_primary_10_1089_vim_2022_0117 crossref_primary_10_3389_fimmu_2023_1140714 crossref_primary_10_3389_fimmu_2024_1348041 crossref_primary_10_1016_j_chom_2022_01_003 crossref_primary_10_1007_s10787_022_01132_6 crossref_primary_10_1002_eji_202170056 crossref_primary_10_3389_fped_2022_822400 crossref_primary_10_1186_s12916_022_02345_w |
| Cites_doi | 10.1038/s41577-020-0331-4 10.1146/annurev-immunol-041015-055318 10.1007/s00251-010-0425-4 10.1002/eji.201646642 10.1016/j.chom.2020.04.009 10.1084/jem.20150712 10.7326/0003-4819-139-9-200311040-00005 10.1038/s41591-020-0944-y 10.1016/S2665-9913(20)30160-0 10.1126/science.1082305 10.1126/science.286.5447.2156 10.1016/j.cca.2020.04.024 10.1126/science.abd3871 10.1093/cid/ciaa577 10.4049/jimmunol.182.1.5 10.1016/j.blre.2016.05.001 10.1038/nri3133 10.3389/fimmu.2019.02035 10.1183/13993003.01526-2020 10.1016/j.immuni.2020.06.001 10.4049/jimmunol.180.2.800 10.1093/cid/ciaa248 10.1093/cid/ciaa344 10.1101/2020.05.05.078154 10.1128/iai.66.6.2782-2790.1998 10.1016/S0140-6736(20)30211-7 10.1016/j.cell.2010.10.032 10.7150/ijbs.46891 10.1016/j.cell.2020.08.001 10.1016/S0140-6736(20)30628-0 10.1126/science.abb8925 10.1016/j.coi.2017.03.005 10.1146/annurev-immunol-020711-075032 10.1016/j.autrev.2020.102537 10.1111/imr.12031 10.1101/2020.04.06.20054890 10.1016/s1473-3099(20)30196-1 10.1126/sciimmunol.abd2071 10.1038/s41586-020-2571-7 10.1016/j.cell.2020.04.026 10.1038/s41392-020-0148-4 10.1371/journal.pone.0003942 10.3389/fimmu.2020.00827 10.1073/pnas.2004168117 10.1038/s41564-020-00813-8 10.3389/fimmu.2018.01869 10.1093/infdis/jiaa463 10.1038/s41577-020-0405-3 10.1128/mBio.02590-20 10.1002/jmv.20255 10.1016/j.jaci.2020.05.001 10.4049/jimmunol.1002722 10.2139/ssrn.3566211 10.1056/nejmc2025179 10.1126/science.abd4585 10.1182/blood.V82.10.3170.bloodjournal82103170 10.1093/cid/ciaa310 10.1016/j.imlet.2013.04.007 10.1016/j.chom.2020.09.002 10.1016/j.immuni.2007.09.002 10.1038/s41591-020-0965-6 10.1016/j.immuni.2020.07.009 10.1038/s41577-020-0308-3 10.1126/science.abd4570 10.1016/s0140-6736(20)31042-4 10.1016/S0140-6736(20)30566-3 10.1128/jvi.02015-19 10.1056/NEJMsr1408795 10.1084/jem.20170355 10.1038/nri1732 10.1016/j.ebiom.2020.102763 10.1016/j.coviro.2011.10.017 10.1056/nejmoa1911326 10.1146/annurev-immunol-042617-053119 10.1038/s41421-020-0168-9 10.3389/fimmu.2017.00872 10.1016/j.cca.2020.04.026 10.1007/s40261-020-00917-3 10.1038/s41590-020-0762-x 10.1038/nature01441 10.1038/nri.2015.10 10.1111/j.1365-2249.2004.02415.x 10.1101/2020.03.18.20038059 10.1101/2020.05.11.20098459 10.1016/j.jcv.2020.104361 10.1016/j.coi.2016.11.003 10.1002/jcla.23475 10.1038/mi.2009.15 10.1016/j.cell.2018.03.070 10.1101/2020.05.07.20094888 10.1038/s41591-020-0897-1 10.1038/nrmicro2147 10.3389/fimmu.2019.02937 10.1016/S0167-5699(00)01754-0 10.1016/S2352-4642(20)30135-8 10.1038/s41423-020-0402-2 10.1038/srep39483 10.1002/path.2067 10.1126/science.abc6261 10.1111/j.1600-065X.1997.tb01010.x 10.1038/nri3802 10.1146/annurev-immunol-031210-101400 10.3389/fimmu.2020.00026 10.3389/fmolb.2020.00157 10.1136/bmj.m1610 10.1016/j.jinf.2020.04.019 10.1016/j.ijid.2020.04.086 10.1101/2020.05.13.20100925 10.1016/j.celrep.2020.02.022 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli. Copyright © 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli |
| Copyright_xml | – notice: Copyright © 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli. – notice: Copyright © 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2020.610300 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_a4eac98436104ae4ade6c1ac37ef3bc9 PMC7772470 33391280 10_3389_fimmu_2020_610300 |
| Genre | Multicenter Study Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c465t-26fa8af6c987b7b67b28dfcad15aaa943ca306175244c3b0c1da860462f65de33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 134 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603382700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:45:20 EDT 2025 Tue Sep 30 16:41:04 EDT 2025 Fri Sep 05 07:41:39 EDT 2025 Thu Apr 03 07:03:16 EDT 2025 Tue Nov 18 20:49:11 EST 2025 Sat Nov 29 02:48:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 monocytes SARS-CoV-2 NK cell innate and adaptiveimmune response antibodies B cells |
| Language | English |
| License | Copyright © 2020 Carsetti, Zaffina, Piano Mortari, Terreri, Corrente, Capponi, Palomba, Mirabella, Cascioli, Palange, Cuccaro, Milito, Zumla, Maeurer, Camisa, Vinci, Santoro, Cimini, Marchioni, Nicastri, Palmieri, Agrati, Ippolito, Porzio, Concato, Onetti Muda, Raponi, Quintarelli, Quinti and Locatelli. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-26fa8af6c987b7b67b28dfcad15aaa943ca306175244c3b0c1da860462f65de33 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Reviewed by: Anna Nilsson, Karolinska Institutet (KI), Sweden; Anne-Sophie Beignon, Centre National de la Recherche Scientifique (CNRS), France Edited by: Francesca Chiodi, Karolinska Institutet (KI), Sweden These authors have contributed equally to this work This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology |
| OpenAccessLink | https://doaj.org/article/a4eac98436104ae4ade6c1ac37ef3bc9 |
| PMID | 33391280 |
| PQID | 2475085563 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a4eac98436104ae4ade6c1ac37ef3bc9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7772470 proquest_miscellaneous_2475085563 pubmed_primary_33391280 crossref_citationtrail_10_3389_fimmu_2020_610300 crossref_primary_10_3389_fimmu_2020_610300 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-16 |
| PublicationDateYYYYMMDD | 2020-12-16 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Zheng (B13) 2020; 17 Sun (B10) 2020; 507 Victora (B59) 2011; 30 Weiskopf (B15) 2020; 5 Maggi (B2) 2020; 146 Patel (B38) 2017; 214 Vabret (B64) 2020; 383 Beaudoin-Bussières (B65) 2020; 11 Hayden (B77) 2016; 30 Duan (B17) 2020; 117 González-Navajas (B83) 2012; 12 Throsby (B101) 2008; 3 B31 Nielsen (B89) 2020; 28 Peng (B11) 2020; 34 Wan (B30) 2019; 94 Chen (B50) 2020; 395 Okba (B18) 2020; 26 Hung (B85) 2020; 395 Aranburu (B60) 2010; 185 Wilk (B56) 2020; 26 Andreano (B90) 2020 Rosado (B99) 2009; 2 McLane (B106) 2019; 37 Seow (B62) 2020; 5 Ochsenbein (B72) 1999; 286 Seydoux (B104) 2020; 53 Shedlock (B44) 2003; 300 Zhou (B1) 2020; 395 Rijkers (B67) 2020; 222 Stavnezer (B93) 2009; 182 Janssen (B46) 2003; 421 Guo (B88) 2020; 71 Phan (B21) 2017; 45 Zhang (B80) 2020; 40 Ferner (B95) 2020; 369 Arunachalam (B54) 2020; 369 Qin (B3) 2020; 71 Bastard (B87) 2020; 370 Weiskopf (B53) 2020; 5 McGonagle (B73) 2020; 19 Zhang (B29) 2020; 7 Ramiscal (B47) 2013; 252 Banerjee (B109) 2020; 11 Tan (B7) 2020; 5 Doherty (B105) 1997; 159 Prilutskiy (B79) 2020; 154 Lee (B23) 2020; 81 Vidal (B69) 2011; 1 Wong (B6) 2004; 136 Laidlaw (B45) 2016; 16 Perlman (B5) 2009; 7 Dörner (B57) 2007; 27 Yu (B26) 2020; 56 Locatelli (B78) 2020; 382 Liu (B110) 2020; 55 King (B81) 2020; 2 Selva (B103) 2020 Sanchez-Cerrillo (B74) 2020 Schulte-Schrepping (B42) 2020; 182 Huang (B91) 2005; 75 Padoan (B25) 2020; 507 Kapellos (B40) 2019; 10 Baker (B108) 2010; 62 Zhao (B28) 2020; 71 Mateus (B14) 2020; 370 He (B32) 2020; 127 Ibarrondo (B63) 2020 Kurosaki (B22) 2015; 15 Bordoni (B35) 2020; 71 Diao (B12) 2020; 11 Arabi (B33) 2017; 376 Grimsholm (B97) 2020; 30 Long (B66) 2020; 26 Mehta (B4) 2020; 395 Zhao (B8) 2020; 96 Capolunghi (B96) 2008; 180 Wu (B20) 2020 Perlman (B9) 2005; 5 Narasimhan (B41) 2019; 37 Zhu (B55) 2020; 53 Aranburu (B58) 2017; 47 Ochsenbein (B71) 2000; 21 Cao (B27) 2020; 20 Carsetti (B102) 2020; 4 Giamarellos-Bourboulis (B43) 2020; 27 Chen (B111) 2020 Fingerle (B36) 1993; 82 Zhang (B86) 2020; 370 Madera (B82) 2016; 213 Abel (B70) 2018; 9 Chen (B94) 2020; 16 Holodick (B100) 2017; 8 Long (B16) 2020; 71 Crotty (B49) 2011; 29 Blanco-Melo (B84) 2020; 181 Liu (B19) 2020; 584 Carsetti (B98) 2020; 10 Lam (B68) 2017; 44 To (B24) 2020; 20 Zhang (B51) 2020; 21 Capolunghi (B61) 2013; 152 Wildgruber (B39) 2016; 6 Merad (B75) 2020; 20 Pavlovich (B107) 2018; 173 Nockher (B37) 1998; 66 Wen (B52) 2020; 6 Choi (B34) 2003; 139 He (B92) 2006; 210 Moore (B76) 2020; 55 Victora (B48) 2010; 143 |
| References_xml | – volume: 20 year: 2020 ident: B75 article-title: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0331-4 – volume: 37 year: 2019 ident: B106 article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-041015-055318 – volume: 62 year: 2010 ident: B108 article-title: Immunoglobulin heavy chain diversity in Pteropid bats: Evidence for a diverse and highly specific antigen binding repertoire publication-title: Immunogenetics doi: 10.1007/s00251-010-0425-4 – volume: 47 year: 2017 ident: B58 article-title: Human B-cell memory is shaped by age- and tissue-specific T-independent and GC-dependent events publication-title: Eur J Immunol doi: 10.1002/eji.201646642 – volume: 27 start-page: 992 year: 2020 ident: B43 article-title: Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.009 – volume: 213 year: 2016 ident: B82 article-title: Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide publication-title: J Exp Med doi: 10.1084/jem.20150712 – volume: 139 year: 2003 ident: B34 article-title: Outcomes and Prognostic Factors in 267 Patients with Severe Acute Respiratory Syndrome in Hong Kong publication-title: Ann Intern Med doi: 10.7326/0003-4819-139-9-200311040-00005 – volume: 26 year: 2020 ident: B56 article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19 publication-title: Nat Med doi: 10.1038/s41591-020-0944-y – volume: 2 year: 2020 ident: B81 article-title: Anakinra in COVID-19: important considerations for clinical trials publication-title: Lancet Rheumatol doi: 10.1016/S2665-9913(20)30160-0 – volume: 300 year: 2003 ident: B44 article-title: Requirement for CD4 T cell help in generating functional CD8 T cell memory publication-title: Sci (80- ) doi: 10.1126/science.1082305 – volume: 286 year: 1999 ident: B72 article-title: Control of early viral and bacterial distribution and disease by natural antibodies publication-title: Sci (80- ) doi: 10.1126/science.286.5447.2156 – volume: 507 year: 2020 ident: B10 article-title: Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China publication-title: Clin Chim Acta doi: 10.1016/j.cca.2020.04.024 – volume: 370 start-page: 89 year: 2020 ident: B14 article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans publication-title: Sci (80- ) doi: 10.1126/science.abd3871 – volume: 71 year: 2020 ident: B35 article-title: An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19 publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa577 – volume: 182 start-page: 5 year: 2009 ident: B93 article-title: The Surprising Discovery That TGFβ Specifically Induces the IgA Class Switch publication-title: J Immunol doi: 10.4049/jimmunol.182.1.5 – volume: 30 year: 2016 ident: B77 article-title: Hemophagocytic syndromes (HPSs) including hemophagocytic lymphohistiocytosis (HLH) in adults: A systematic scoping review publication-title: Blood Rev doi: 10.1016/j.blre.2016.05.001 – volume: 12 year: 2012 ident: B83 article-title: Immunomodulatory functions of type i interferons publication-title: Nat Rev Immunol doi: 10.1038/nri3133 – volume: 10 year: 2019 ident: B40 article-title: Human monocyte subsets and phenotypes in major chronic inflammatory diseases publication-title: Front Immunol doi: 10.3389/fimmu.2019.02035 – volume: 56 start-page: 2001526 year: 2020 ident: B26 article-title: Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients publication-title: Eur Respir J doi: 10.1183/13993003.01526-2020 – volume: 53 start-page: 98 year: 2020 ident: B104 article-title: Analysis of a SARS-CoV-2 infected individual reveals development of potent neutralizing antibodies to distinct epitopes with limited somatic mutation publication-title: Immunity doi: 10.1016/j.immuni.2020.06.001 – volume: 180 year: 2008 ident: B96 article-title: CpG drives human transitional B cells to terminal differentiation and production of natural antibodies publication-title: J Immunol doi: 10.4049/jimmunol.180.2.800 – volume: 71 year: 2020 ident: B3 article-title: Dysregulation of immune response in patients with COVID-19 in Wuhan, China publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa248 – volume: 71 year: 2020 ident: B28 article-title: Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa344 – year: 2020 ident: B90 article-title: Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients publication-title: bioRxiv doi: 10.1101/2020.05.05.078154 – volume: 66 year: 1998 ident: B37 article-title: Expanded CD14+ CD16+ Monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis publication-title: Infect Immun doi: 10.1128/iai.66.6.2782-2790.1998 – volume: 395 year: 2020 ident: B50 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – volume: 143 start-page: 592 year: 2010 ident: B48 article-title: Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter publication-title: Cell doi: 10.1016/j.cell.2010.10.032 – volume: 16 year: 2020 ident: B94 article-title: A potential treatment of COVID-19 with TGF-β blockade publication-title: Int J Biol Sci doi: 10.7150/ijbs.46891 – volume: 182 year: 2020 ident: B42 article-title: Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment publication-title: Cell doi: 10.1016/j.cell.2020.08.001 – volume: 395 year: 2020 ident: B4 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet doi: 10.1016/S0140-6736(20)30628-0 – volume: 55 start-page: 105954 year: 2020 ident: B76 article-title: Cytokine release syndrome in severe COVID-19 publication-title: Sci (80- ) doi: 10.1126/science.abb8925 – volume: 45 year: 2017 ident: B21 article-title: Memory B cells: total recall publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2017.03.005 – volume: 30 year: 2011 ident: B59 article-title: Germinal Centers publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-020711-075032 – volume: 19 year: 2020 ident: B73 article-title: The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2020.102537 – volume: 252 year: 2013 ident: B47 article-title: T-cell subsets in the germinal center publication-title: Immunol Rev doi: 10.1111/imr.12031 – year: 2020 ident: B111 article-title: Key to successful treatment of COVID-19: accurate identification of severe risks and early intervention of disease progression publication-title: medRxiv doi: 10.1101/2020.04.06.20054890 – volume: 20 year: 2020 ident: B24 article-title: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study publication-title: Lancet Infect Dis doi: 10.1016/s1473-3099(20)30196-1 – volume: 5 start-page: eabd2071 year: 2020 ident: B53 article-title: Phenotype and kinetics of SARS-CoV-2{\textendash}specific T cells in COVID-19 patients with acute respiratory distress syndrome publication-title: Sci Immunol doi: 10.1126/sciimmunol.abd2071 – volume: 584 year: 2020 ident: B19 article-title: Potent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 181 year: 2020 ident: B84 article-title: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 5 start-page: 33 year: 2020 ident: B7 article-title: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-0148-4 – volume: 3 start-page: e3942 year: 2008 ident: B101 article-title: Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells publication-title: PloS One doi: 10.1371/journal.pone.0003942 – volume: 11 year: 2020 ident: B12 article-title: Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19) publication-title: Front Immunol doi: 10.3389/fimmu.2020.00827 – volume: 117 year: 2020 ident: B17 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2004168117 – volume: 5 year: 2020 ident: B62 article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans publication-title: Nat Microbiol doi: 10.1038/s41564-020-00813-8 – volume: 9 year: 2018 ident: B70 article-title: Natural killer cells: Development, maturation, and clinical utilization publication-title: Front Immunol doi: 10.3389/fimmu.2018.01869 – volume: 222 year: 2020 ident: B67 article-title: Differences in Antibody Kinetics and Functionality Between Severe and Mild Severe Acute Respiratory Syndrome Coronavirus 2 Infections publication-title: J Infect Dis doi: 10.1093/infdis/jiaa463 – volume: 383 start-page: e74 year: 2020 ident: B64 article-title: Antibody responses to SARS-CoV-2 short-lived publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0405-3 – volume: 11 start-page: e0250 year: 2020 ident: B65 article-title: Decline of humoral responses against sars-cov-2 spike in convalescent individuals publication-title: MBio doi: 10.1128/mBio.02590-20 – volume: 75 year: 2005 ident: B91 article-title: An interferon-γ-related cytokine storm in SARS patients publication-title: J Med Virol doi: 10.1002/jmv.20255 – volume: 146 start-page: 18 year: 2020 ident: B2 article-title: COVID-19: unanswered questions on immune response and pathogenesis publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2020.05.001 – volume: 185 year: 2010 ident: B60 article-title: TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells publication-title: J Immunol doi: 10.4049/jimmunol.1002722 – year: 2020 ident: B20 article-title: Neutralizing Antibody Responses to SARS-CoV-2 in a COVID-19 Recovered Patient Cohort and Their Implications publication-title: SSRN Electron J doi: 10.2139/ssrn.3566211 – year: 2020 ident: B63 article-title: Rapid Decay of Anti–SARS-CoV-2 Antibodies in Persons with Mild Covid-19 publication-title: N Engl J Med doi: 10.1056/nejmc2025179 – volume: 370 start-page: eabd4585 year: 2020 ident: B87 article-title: Auto-antibodies against type I IFNs in patients with life-threatening COVID-19 publication-title: Sci (80- ) doi: 10.1126/science.abd4585 – volume: 82 year: 1993 ident: B36 article-title: The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients publication-title: Blood doi: 10.1182/blood.V82.10.3170.bloodjournal82103170 – volume: 71 year: 2020 ident: B88 article-title: Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19) publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa310 – volume: 152 year: 2013 ident: B61 article-title: Why do we need IgM memory B cells publication-title: Immunol Lett doi: 10.1016/j.imlet.2013.04.007 – volume: 28 year: 2020 ident: B89 article-title: Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.09.002 – volume: 27 year: 2007 ident: B57 article-title: Antibodies and B Cell Memory in Viral Immunity publication-title: Immunity doi: 10.1016/j.immuni.2007.09.002 – volume: 26 year: 2020 ident: B66 article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections publication-title: Nat Med doi: 10.1038/s41591-020-0965-6 – volume: 53 year: 2020 ident: B55 article-title: Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients publication-title: Immunity doi: 10.1016/j.immuni.2020.07.009 – volume: 20 year: 2020 ident: B27 article-title: COVID-19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0308-3 – volume: 370 start-page: eabd4570 year: 2020 ident: B86 article-title: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 publication-title: Sci (80- ) doi: 10.1126/science.abd4570 – volume: 395 year: 2020 ident: B85 article-title: Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial publication-title: Lancet doi: 10.1016/s0140-6736(20)31042-4 – ident: B31 – volume: 395 year: 2020 ident: B1 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 – volume: 94 start-page: e02015 year: 2019 ident: B30 article-title: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry publication-title: J Virol doi: 10.1128/jvi.02015-19 – volume: 376 year: 2017 ident: B33 article-title: Middle east respiratory syndrome publication-title: N Engl J Med doi: 10.1056/NEJMsr1408795 – volume: 214 year: 2017 ident: B38 article-title: The fate and lifespan of human monocyte subsets in steady state and systemic inflammation publication-title: J Exp Med doi: 10.1084/jem.20170355 – volume: 5 year: 2005 ident: B9 article-title: Immunopathogenesis of coronavirus infections: Implications for SARS publication-title: Nat Rev Immunol doi: 10.1038/nri1732 – volume: 55 start-page: 102763 year: 2020 ident: B110 article-title: Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102763 – volume: 1 start-page: 497 year: 2011 ident: B69 article-title: Natural killer cell responses during viral infections: Flexibility and conditioning of innate immunity by experience publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2011.10.017 – volume: 382 year: 2020 ident: B78 article-title: Emapalumab in Children with Primary Hemophagocytic Lymphohistiocytosis publication-title: N Engl J Med doi: 10.1056/nejmoa1911326 – volume: 37 year: 2019 ident: B41 article-title: Nonclassical Monocytes in Health and Disease publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-042617-053119 – volume: 6 start-page: 31 year: 2020 ident: B52 article-title: Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing publication-title: Cell Discovery doi: 10.1038/s41421-020-0168-9 – volume: 8 year: 2017 ident: B100 article-title: Defining Natural Antibodies publication-title: Front Immunol doi: 10.3389/fimmu.2017.00872 – volume: 507 year: 2020 ident: B25 article-title: IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study publication-title: Clin Chim Acta doi: 10.1016/j.cca.2020.04.026 – volume: 40 year: 2020 ident: B80 article-title: Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia publication-title: Clin Drug Invest doi: 10.1007/s40261-020-00917-3 – volume: 21 year: 2020 ident: B51 article-title: Single-cell landscape of immunological responses in patients with COVID-19 publication-title: Nat Immunol doi: 10.1038/s41590-020-0762-x – volume: 421 year: 2003 ident: B46 article-title: CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes publication-title: Nature doi: 10.1038/nature01441 – volume: 16 year: 2016 ident: B45 article-title: The multifaceted role of CD4+ T cells in CD8+ T cell memory publication-title: Nat Rev Immunol doi: 10.1038/nri.2015.10 – volume: 136 start-page: 95 year: 2004 ident: B6 article-title: Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2004.02415.x – volume: 26 year: 2020 ident: B18 article-title: SARS-CoV-2 specific antibody responses in COVID-19 patients publication-title: Emerg Infect Dis doi: 10.1101/2020.03.18.20038059 – year: 2020 ident: B103 article-title: Distinct systems serology features in children, elderly and COVID patients publication-title: medRxiv doi: 10.1101/2020.05.11.20098459 – volume: 127 start-page: 104361 year: 2020 ident: B32 article-title: The clinical course and its correlated immune status in COVID-19 pneumonia publication-title: J Clin Virol doi: 10.1016/j.jcv.2020.104361 – volume: 44 start-page: 43 year: 2017 ident: B68 article-title: NK cells in host responses to viral infections publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2016.11.003 – volume: 34 start-page: e23475 year: 2020 ident: B11 article-title: Diagnostic value of peripheral hematologic markers for coronavirus disease 2019 (COVID-19): A multicenter, cross-sectional study publication-title: J Clin Lab Anal doi: 10.1002/jcla.23475 – volume: 2 year: 2009 ident: B99 article-title: From the fetal liver to spleen and gut: the highway to natural antibody publication-title: Mucosal Immunol doi: 10.1038/mi.2009.15 – volume: 173 year: 2018 ident: B107 article-title: The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity publication-title: Cell doi: 10.1016/j.cell.2018.03.070 – volume: 154 year: 2020 ident: B79 article-title: SARS-CoV-2 Infection Associated Hemophagocytic Lymphohistiocytosis: An autopsy series with clinical and laboratory correlation publication-title: Am J Clin Pathol doi: 10.1101/2020.05.07.20094888 – volume: 71 year: 2020 ident: B16 article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19 publication-title: Nat Med doi: 10.1038/s41591-020-0897-1 – volume: 7 year: 2009 ident: B5 article-title: Coronaviruses post-SARS: Update on replication and pathogenesis publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2147 – volume: 10 year: 2020 ident: B98 article-title: Lack of Gut Secretory Immunoglobulin A in Memory B-Cell Dysfunction-Associated Disorders: A Possible Gut-Spleen Axis publication-title: Front Immunol doi: 10.3389/fimmu.2019.02937 – volume: 21 year: 2000 ident: B71 article-title: Natural antibodies and complement link innate and acquired immunity publication-title: Immunol Today doi: 10.1016/S0167-5699(00)01754-0 – volume: 4 year: 2020 ident: B102 article-title: The immune system of children: the key to understanding SARS-CoV-2 susceptibility publication-title: Lancet Child Adolesc Heal doi: 10.1016/S2352-4642(20)30135-8 – volume: 17 year: 2020 ident: B13 article-title: Functional exhaustion of antiviral lymphocytes in COVID-19 patients publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-0402-2 – volume: 6 start-page: 39483 year: 2016 ident: B39 article-title: The “intermediate” CD14++ CD16+ monocyte subset increases in severe peripheral artery disease in humans publication-title: Sci Rep doi: 10.1038/srep39483 – volume: 210 year: 2006 ident: B92 article-title: Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS publication-title: J Pathol doi: 10.1002/path.2067 – volume: 369 year: 2020 ident: B54 article-title: Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans publication-title: Sci (80- ) doi: 10.1126/science.abc6261 – volume: 159 year: 1997 ident: B105 article-title: Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections publication-title: Immunol Rev doi: 10.1111/j.1600-065X.1997.tb01010.x – volume: 5 start-page: eabd2071 year: 2020 ident: B15 article-title: Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome publication-title: Sci Immunol doi: 10.1126/sciimmunol.abd2071 – volume: 15 year: 2015 ident: B22 article-title: Memory B cells publication-title: Nat Rev Immunol doi: 10.1038/nri3802 – volume: 29 year: 2011 ident: B49 article-title: Follicular helper CD4 T cells (TFH) publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-031210-101400 – volume: 11 year: 2020 ident: B109 article-title: Novel Insights Into Immune Systems of Bats publication-title: Front Immunol doi: 10.3389/fimmu.2020.00026 – volume: 7 year: 2020 ident: B29 article-title: Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19 publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.00157 – volume: 369 start-page: m1610 year: 2020 ident: B95 article-title: Remdesivir in covid-19 publication-title: BMJ doi: 10.1136/bmj.m1610 – volume: 81 start-page: e55 year: 2020 ident: B23 article-title: Dynamics of anti-SARS-Cov-2 IgM and IgG antibodies among COVID-19 patients publication-title: J Infect doi: 10.1016/j.jinf.2020.04.019 – volume: 96 year: 2020 ident: B8 article-title: Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2020.04.086 – year: 2020 ident: B74 article-title: Differential Redistribution of Activated Monocyte and Dendritic Cell Subsets to the Lung Associates with Severity of COVID-19 publication-title: medRxiv doi: 10.1101/2020.05.13.20100925 – volume: 30 year: 2020 ident: B97 article-title: The Interplay between CD27dull and CD27bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory publication-title: Cell Rep doi: 10.1016/j.celrep.2020.02.022 |
| SSID | ssj0000493335 |
| Score | 2.5971136 |
| Snippet | SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 610300 |
| SubjectTerms | Adaptive Immunity Adult Antibodies, Viral - immunology B cells COVID-19 COVID-19 - immunology COVID-19 - pathology Female Humans Immunity, Innate Immunoglobulin A - immunology Immunoglobulin M - immunology Immunology innate and adaptiveimmune response Killer Cells, Natural - immunology Killer Cells, Natural - pathology Male monocytes NK cell SARS-CoV-2 SARS-CoV-2 - immunology Severity of Illness Index |
| Title | Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33391280 https://www.proquest.com/docview/2475085563 https://pubmed.ncbi.nlm.nih.gov/PMC7772470 https://doaj.org/article/a4eac98436104ae4ade6c1ac37ef3bc9 |
| Volume | 11 |
| WOSCitedRecordID | wos000603382700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4s1SqIzECTU0sR07OS5LKyrRCnWh2ls08UNd1HVWTbZSL_x2xnG62kUILlxycOxk5PnsmZHH3xDyLsNdH-0aS2oui0RoyJMCsjxhQgJjjgnVMzGdf1Gnp8VsVn7dKPUVcsIiPXCcuAMQuDWUheBo5wVYAcZKnYHmyjpe6_7qHno9G8HUj-j3cs7zeIyJUVh54OaLxQrjQZZ-kKG0VrpliHq-_j85mb_nSm4Yn6NH5OHgNdJxlPYxuWP9E3I_1pG8eUr8p6HMSUePvUfvkYI3dGxgGTYzehzugFh6FtNhbUu7hk7HZ9Nk0pwnDIfEfCxPG0fH7c1i2TU9kes-PZlfmv3-Y1OLmLd0gkavfUa-Hx1-m3xOhkIKiRYy7xImHRTgJM6jqlUtVc0K4zSYLAeAUnANPLgyOdp6zetUZwYKGa6tOpkby_lzsuMbb18SmjJdoF11Ej8nTKZBp6p0zGCYJULziKS3s1rpgWU8FLu4rDDaCIqoekVUQRFVVMSIvF8PWUaKjb91_hhUte4Y2LH7BsRMNWCm-hdmRuTtraIrXE3hiAS8bVZthdjMQ-ae5CPyIip-_SsEVInWHEVQW5DYkmX7jZ9f9IzdChEvVPrqfwi_Sx6E-QgpNZl8TXa6q5V9Q-7p627eXu2Ru2pW7PWLAZ8nPw9_AfMFEQI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+Innate+and+Adaptive+Immune+Responses+to+SARS-CoV-2+Infection+of+Asymptomatic%2C+Mild%2C+and+Severe+Cases&rft.jtitle=Frontiers+in+immunology&rft.au=Carsetti%2C+Rita&rft.au=Zaffina%2C+Salvatore&rft.au=Piano+Mortari%2C+Eva&rft.au=Terreri%2C+Sara&rft.date=2020-12-16&rft.eissn=1664-3224&rft.volume=11&rft.spage=610300&rft_id=info:doi/10.3389%2Ffimmu.2020.610300&rft_id=info%3Apmid%2F33391280&rft.externalDocID=33391280 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |