Time series behavior modeling with digital twin for Internet of Vehicles

Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:EURASIP journal on wireless communications and networking Ročník 2019; číslo 1; s. 1 - 11
Hlavní autori: Zhang, Tianle, Liu, Xiangtao, Luo, Zongwei, Dong, Fuqiang, Jiang, Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 16.12.2019
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1687-1499, 1687-1472, 1687-1499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure. In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles.
AbstractList Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure. In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles.
Abstract Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure. In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles.
Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles.
ArticleNumber 271
Author Dong, Fuqiang
Zhang, Tianle
Liu, Xiangtao
Luo, Zongwei
Jiang, Yu
Author_xml – sequence: 1
  givenname: Tianle
  surname: Zhang
  fullname: Zhang, Tianle
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University
– sequence: 2
  givenname: Xiangtao
  surname: Liu
  fullname: Liu, Xiangtao
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University
– sequence: 3
  givenname: Zongwei
  surname: Luo
  fullname: Luo, Zongwei
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Fuqiang
  surname: Dong
  fullname: Dong, Fuqiang
  organization: Cyberspace Security Research Center, Peng Cheng Laboratory
– sequence: 5
  givenname: Yu
  orcidid: 0000-0002-6949-4876
  surname: Jiang
  fullname: Jiang, Yu
  email: jiangyu@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University
BookMark eNp9kMtuFDEQRS2USOT1AdlZYt3gV_uxRBGQkSJlE9ha7nZ5xqMeO9gOEX-Ph0YQIcGqSlV1b12dc3SScgKEril5S6mW7yrlkuuBUDPQUZtBv0JnVGo1UGHMyYv-NTqvdU8I58KwM3T7EA-AK5QIFU-wc99iLviQPSwxbfFzbDvs4zY2t-D2HBMOfb1JDUqChnPAX2AX5wXqJToNbqlw9ateoM8fPzzc3A539582N-_vhllI0YaZe2oCmSYXJi210TNhowcmmA_MaCm9A89U4MBhpL2DUU2SKw2UOykUv0Cb1ddnt7ePJR5c-W6zi_bnIJetdaUdI1nGSZi5ZKPhQZiJGTYBI04rENorprvXm9XrseSvT1Cb3eenknr8rmWKUcEN71d0vZpLrrVA-P2VEnuEb1f4tsO3R_j26Kz-0swdYYs5teLi8l8lW5W1f0lbKH8y_Vv0A7dNmbI
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3120843
crossref_primary_10_1016_j_egyr_2022_02_305
crossref_primary_10_1186_s12544_025_00713_0
crossref_primary_10_3390_bdcc6040115
crossref_primary_10_1109_JIOT_2024_3420439
crossref_primary_10_3390_bdcc8030027
crossref_primary_10_1016_j_compind_2020_103316
crossref_primary_10_1109_TII_2024_3465600
crossref_primary_10_1007_s00607_020_00832_7
crossref_primary_10_1016_j_aei_2023_102148
crossref_primary_10_3390_app13105871
crossref_primary_10_1016_j_rser_2021_110801
crossref_primary_10_1016_j_jmsy_2022_06_015
crossref_primary_10_3390_su141710725
crossref_primary_10_1002_est2_242
crossref_primary_10_1016_j_geits_2022_100014
crossref_primary_10_1016_j_ecmx_2025_100949
crossref_primary_10_1109_ACCESS_2024_3506660
crossref_primary_10_1155_2022_3929958
crossref_primary_10_12688_digitaltwin_17807_2
crossref_primary_10_1109_TITS_2022_3183379
crossref_primary_10_3390_asi5030056
crossref_primary_10_1016_j_mfglet_2023_08_014
Cites_doi 10.1016/j.comcom.2007.04.009
10.1016/j.ins.2019.04.011
10.1109/ISGTEUROPE.2010.5638947
10.1145/1161064.1161084
10.1016/j.adhoc.2006.05.012
10.1109/TII.2019.2938778
10.1109/MCOM.2007.4378332
10.1109/MWC.2008.4599222
10.1109/ITEC.2014.6861812
10.1109/TWC.2009.060598
10.1109/TVT.2019.2910217
10.1007/978-3-642-28487-8_21
10.3390/app9030437
10.1109/TPWRS.2009.2036481
10.1109/JIOT.2018.2846624
10.1109/TPWRD.2012.2236364
10.1109/JPROC.2010.2066250
10.1155/2018/7943586
10.1109/ACCESS.2018.2846590
10.1109/APEC.2011.5744627
10.3390/s18124486
10.1007/s11042-018-6938-9
10.1109/ACCESS.2018.2881422
10.1155/2018/5823439
10.1016/j.future.2018.12.054
10.1109/TII.2019.2907754
10.1109/DSC.2018.00137
10.3390/s18082440
ContentType Journal Article
Copyright The Author(s). 2019
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13638-019-1589-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 11
ExternalDocumentID oai_doaj_org_article_230fc362593f49b292be20a87e48d728
10_1186_s13638_019_1589_8
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: U1636215, 61871140, 61572153, 61572492, 61672020
– fundername: the National Key research and Development Plan
  grantid: 2018YFB0803504
– fundername: the Guangdong Province Key Research and Development Plan
  grantid: 2019B010137004
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c464t-c3d19f0bbafb86898c025de242df29866daed27f3e3e51d27e57b6378e13a6473
IEDL.DBID P5Z
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510406900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1499
1687-1472
IngestDate Tue Oct 14 19:05:13 EDT 2025
Sat Oct 11 05:45:04 EDT 2025
Tue Nov 18 20:44:37 EST 2025
Sat Nov 29 01:43:53 EST 2025
Fri Feb 21 02:35:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mobility
Electric vehicle
Digital twin
Charging scheduling
Time series
Internet of Vehicles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-c3d19f0bbafb86898c025de242df29866daed27f3e3e51d27e57b6378e13a6473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6949-4876
OpenAccessLink https://www.proquest.com/docview/2327214393?pq-origsite=%requestingapplication%
PQID 2327214393
PQPubID 237293
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_230fc362593f49b292be20a87e48d728
proquest_journals_2327214393
crossref_primary_10_1186_s13638_019_1589_8
crossref_citationtrail_10_1186_s13638_019_1589_8
springer_journals_10_1186_s13638_019_1589_8
PublicationCentury 2000
PublicationDate 2019-12-16
PublicationDateYYYYMMDD 2019-12-16
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-16
  day: 16
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References TianZhihongCuiYuAnLunSuShenYinXiaoxiaYinLihuaCuiXiangA Real-Time Correlation of Host-Level Events in Cyber Range Service for Smart CampusIEEE Access20186353553536410.1109/ACCESS.2018.2846590
Chunyuan Kang, Tianle Zhang. Realistic traffic data based mobility modeling and simulation of smart EV. In the 3rd IEEE International Conference on Data Science in Cyberspace (DSC), 2018, pp. 854-857.
DuXChenHHSecurity in wireless sensor networksIEEE Wireless Commun Mag2008154606610.1109/MWC.2008.4599222Aug.
TanQGaoYShiJWangXFangBTianZToward a comprehensive insight into the eclipse attacks of tor hidden servicesIEEE Internet Things J2019621584159310.1109/JIOT.2018.2846624April
S. Babaei, D. Steen, T.A. Le, O. Carlson and L. Bertling. Effects of plug-in electric vehicles on distribution systems: a real case of Gothenburg. Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, 11-13 Oct. 2010.
M. J. Rutherford and V. Yousefzadeh. The impact of electric vehicle battery charging on distribution transformers. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 396-400.
YuXiangTianZhihongQiuJingJiangFengA Data Leakage Prevention Method Based on the Reduction of Confidential and Context Terms for Smart Mobile DevicesWireless Communications and Mobile Computing20182018111
TianZGaoXSuSQiuJDuXGuizaniMEvaluating reputation management schemes of Internet of Vehicles based on evolutionary game theoryIEEE Trans Vehicular Technol20196865971598010.1109/TVT.2019.2910217
Wang, Z.-P & Sun, F.-C & Lin, C. (2006). Computing method of energy consumption in EV typical driving mode. 26. 69-72.
Toepfer, C.: SAE electric vehicle conductive charge coupler, SAE J1772. Society of Automotive Engineers (2009)
XiaoYRayiVSunBDuXHuFGallowayMA survey of key management schemes in wireless sensor networksJ Comput Commun20073011-122314234110.1016/j.comcom.2007.04.009Sept.
Tirez, A.; Luickx, P.; He, X.; Rious, V. Optimal charging schedule of an electric vehicle fleet, 7th International Conference on the European Energy Market (EEM), pp.1-6, 23-25 June 2010.
QiuJChaiYLiuYGuZLiSTianZAutomatic non-taxonomic relation extraction from big data in smart cityIEEE Access20186748547486410.1109/ACCESS.2018.2881422
RolinkJRehtanzCLarge-scale modeling of grid-connected electric vehiclesIEEE Transact Power Delivery201328289490210.1109/TPWRD.2012.2236364
Christoph Aldejohann, Jonas Maasmann, Willi Horenkamp, Fritz Rettberg, Christian Rehtanz. Testing environment for vehicle to grid (V2G) applications for investigating a voltage stability support method. In IEEE Transportation and Electrification Conference and Expo (ITEC), Dearborn 2014
LeeJunghoonKimHye-JinParkGyung-LeenJeonHongbeomGenetic Algorithm-Based Charging Task Scheduler for Electric Vehicles in Smart TransportationIntelligent Information and Database Systems2012Berlin, HeidelbergSpringer Berlin Heidelberg20821710.1007/978-3-642-28487-8_21
X. Du, Y. Xiao, M. Guizani, and H. H. Chen. An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, Elsevier, Vol. 5, Issue 1, pp 24–34, Jan. 2007.
LiMohanSunYanbinJiangYuTianZhihongAnswering the Min-Cost Quality-Aware Query on Multi-Sources in Sensor-Cloud SystemsSensors20181812448610.3390/s18124486
TianZLiMQiuMSunYSuSBlock-DEF: a secure digital evidence framework using blockchainInform Sci201949115116510.1016/j.ins.2019.04.011
DuXGuizaniMXiaoYChenHHA routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networksIEEE Trans Wireless Commun2009831223122910.1109/TWC.2009.060598March
Z. Tian, C. Luo, J. Qiu, X. Du and M. Guizani. A distributed deep learning system for web attack detection on edge devices. IEEE Transactions on Industrial Informatics. 2019. DOI: https://doi.org/10.1109/TII.2019.2938778.
ClementKHaesenEDriesenJThe impact of charging plug-in hybrid electric vehicles on the distribution grid[J]IEEE Transact Power Systems201025137138010.1109/TPWRS.2009.2036481
WangZiHanLiuChaoGeQiuJingTianZhiHongCuiXiangSuShenAutomatically Traceback RDP-Based Targeted Ransomware AttacksWireless Communications and Mobile Computing20182018113
J. Haerri, M. Fiore, F. Filali, and C. Bonnet. Vanetmobisim: generating realistic mobility patterns for vanets. In ACM Workshop on Vehicular Ad Hoc Networks (VANET 2006), Los Angeles, California, September 2006.
XiaoYDuXZhangJGuizaniSInternet protocol television (IPTV): the killer application for the next generation internetIEEE Commun Mag2007451112613410.1109/MCOM.2007.4378332Nov.
TianZSuSShiWDuXGuizaniMYuXA data-driven model for future Internet route decision modelingFuture Generation Comput Syst20199521222010.1016/j.future.2018.12.054
M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator. In Proc. of the SCS Western Multiconference Web-based Simulation Track, Jan. 1999
HanWeihongTianZhihongHuangZizhongLiShudongJiaYanBidirectional self-adaptive resampling in internet of things big data learningMultimedia Tools and Applications20187821301113012610.1007/s11042-018-6938-9
SuSSunYGaoXQiuJTianZA correlation-change based feature selection method for IoT equipment anomaly detectionAppl Sci20199343710.3390/app9030437https://doi.org/10.3390/app9030437
Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition, ISO 15118-1, 2013.
WangYTianZZhangHSuSShiWA privacy preserving scheme for nearest neighbor querySensors.2018188244010.3390/s18082440https://doi.org/10.3390/ s18082440
TianZShiWWangYZhuCDuXSuSSunYGuizaniNReal time lateral movement detection based on evidence reasoning network for edge computing environmentIEEE Trans Ind Inform20191574285429410.1109/TII.2019.2907754
J. Lopes, F. Soares, P. Almeida, Integration of electric vehicles in the electric power system. Proc IEEE 168–183 (2011)
Xiang Yu (1589_CR12) 2018; 2018
1589_CR18
Z Tian (1589_CR28) 2019; 68
S Su (1589_CR19) 2019; 9
K Clement (1589_CR5) 2010; 25
J Qiu (1589_CR16) 2018; 6
Y Xiao (1589_CR31) 2007; 45
X Du (1589_CR32) 2008; 15
Q Tan (1589_CR11) 2019; 6
J Rolink (1589_CR21) 2013; 28
Z Tian (1589_CR26) 2019; 15
Z Tian (1589_CR2) 2019; 95
1589_CR30
Junghoon Lee (1589_CR4) 2012
1589_CR10
Zhihong Tian (1589_CR13) 2018; 6
X Du (1589_CR33) 2009; 8
Weihong Han (1589_CR15) 2018; 78
1589_CR3
Y Wang (1589_CR17) 2018; 18
1589_CR1
Y Xiao (1589_CR29) 2007; 30
1589_CR7
1589_CR8
Z Tian (1589_CR27) 2019; 491
1589_CR6
1589_CR9
ZiHan Wang (1589_CR20) 2018; 2018
1589_CR24
1589_CR23
1589_CR22
Mohan Li (1589_CR14) 2018; 18
1589_CR25
References_xml – reference: DuXChenHHSecurity in wireless sensor networksIEEE Wireless Commun Mag2008154606610.1109/MWC.2008.4599222Aug.
– reference: YuXiangTianZhihongQiuJingJiangFengA Data Leakage Prevention Method Based on the Reduction of Confidential and Context Terms for Smart Mobile DevicesWireless Communications and Mobile Computing20182018111
– reference: M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator. In Proc. of the SCS Western Multiconference Web-based Simulation Track, Jan. 1999
– reference: HanWeihongTianZhihongHuangZizhongLiShudongJiaYanBidirectional self-adaptive resampling in internet of things big data learningMultimedia Tools and Applications20187821301113012610.1007/s11042-018-6938-9
– reference: TianZGaoXSuSQiuJDuXGuizaniMEvaluating reputation management schemes of Internet of Vehicles based on evolutionary game theoryIEEE Trans Vehicular Technol20196865971598010.1109/TVT.2019.2910217
– reference: Toepfer, C.: SAE electric vehicle conductive charge coupler, SAE J1772. Society of Automotive Engineers (2009)
– reference: QiuJChaiYLiuYGuZLiSTianZAutomatic non-taxonomic relation extraction from big data in smart cityIEEE Access20186748547486410.1109/ACCESS.2018.2881422
– reference: SuSSunYGaoXQiuJTianZA correlation-change based feature selection method for IoT equipment anomaly detectionAppl Sci20199343710.3390/app9030437https://doi.org/10.3390/app9030437
– reference: Tirez, A.; Luickx, P.; He, X.; Rious, V. Optimal charging schedule of an electric vehicle fleet, 7th International Conference on the European Energy Market (EEM), pp.1-6, 23-25 June 2010.
– reference: WangYTianZZhangHSuSShiWA privacy preserving scheme for nearest neighbor querySensors.2018188244010.3390/s18082440https://doi.org/10.3390/ s18082440
– reference: M. J. Rutherford and V. Yousefzadeh. The impact of electric vehicle battery charging on distribution transformers. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 396-400.
– reference: TianZShiWWangYZhuCDuXSuSSunYGuizaniNReal time lateral movement detection based on evidence reasoning network for edge computing environmentIEEE Trans Ind Inform20191574285429410.1109/TII.2019.2907754
– reference: S. Babaei, D. Steen, T.A. Le, O. Carlson and L. Bertling. Effects of plug-in electric vehicles on distribution systems: a real case of Gothenburg. Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, 11-13 Oct. 2010.
– reference: J. Haerri, M. Fiore, F. Filali, and C. Bonnet. Vanetmobisim: generating realistic mobility patterns for vanets. In ACM Workshop on Vehicular Ad Hoc Networks (VANET 2006), Los Angeles, California, September 2006.
– reference: XiaoYDuXZhangJGuizaniSInternet protocol television (IPTV): the killer application for the next generation internetIEEE Commun Mag2007451112613410.1109/MCOM.2007.4378332Nov.
– reference: LiMohanSunYanbinJiangYuTianZhihongAnswering the Min-Cost Quality-Aware Query on Multi-Sources in Sensor-Cloud SystemsSensors20181812448610.3390/s18124486
– reference: Chunyuan Kang, Tianle Zhang. Realistic traffic data based mobility modeling and simulation of smart EV. In the 3rd IEEE International Conference on Data Science in Cyberspace (DSC), 2018, pp. 854-857.
– reference: RolinkJRehtanzCLarge-scale modeling of grid-connected electric vehiclesIEEE Transact Power Delivery201328289490210.1109/TPWRD.2012.2236364
– reference: XiaoYRayiVSunBDuXHuFGallowayMA survey of key management schemes in wireless sensor networksJ Comput Commun20073011-122314234110.1016/j.comcom.2007.04.009Sept.
– reference: Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition, ISO 15118-1, 2013.
– reference: ClementKHaesenEDriesenJThe impact of charging plug-in hybrid electric vehicles on the distribution grid[J]IEEE Transact Power Systems201025137138010.1109/TPWRS.2009.2036481
– reference: WangZiHanLiuChaoGeQiuJingTianZhiHongCuiXiangSuShenAutomatically Traceback RDP-Based Targeted Ransomware AttacksWireless Communications and Mobile Computing20182018113
– reference: TianZhihongCuiYuAnLunSuShenYinXiaoxiaYinLihuaCuiXiangA Real-Time Correlation of Host-Level Events in Cyber Range Service for Smart CampusIEEE Access20186353553536410.1109/ACCESS.2018.2846590
– reference: TanQGaoYShiJWangXFangBTianZToward a comprehensive insight into the eclipse attacks of tor hidden servicesIEEE Internet Things J2019621584159310.1109/JIOT.2018.2846624April
– reference: J. Lopes, F. Soares, P. Almeida, Integration of electric vehicles in the electric power system. Proc IEEE 168–183 (2011)
– reference: X. Du, Y. Xiao, M. Guizani, and H. H. Chen. An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, Elsevier, Vol. 5, Issue 1, pp 24–34, Jan. 2007.
– reference: TianZSuSShiWDuXGuizaniMYuXA data-driven model for future Internet route decision modelingFuture Generation Comput Syst20199521222010.1016/j.future.2018.12.054
– reference: LeeJunghoonKimHye-JinParkGyung-LeenJeonHongbeomGenetic Algorithm-Based Charging Task Scheduler for Electric Vehicles in Smart TransportationIntelligent Information and Database Systems2012Berlin, HeidelbergSpringer Berlin Heidelberg20821710.1007/978-3-642-28487-8_21
– reference: Z. Tian, C. Luo, J. Qiu, X. Du and M. Guizani. A distributed deep learning system for web attack detection on edge devices. IEEE Transactions on Industrial Informatics. 2019. DOI: https://doi.org/10.1109/TII.2019.2938778.
– reference: DuXGuizaniMXiaoYChenHHA routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networksIEEE Trans Wireless Commun2009831223122910.1109/TWC.2009.060598March
– reference: Wang, Z.-P & Sun, F.-C & Lin, C. (2006). Computing method of energy consumption in EV typical driving mode. 26. 69-72.
– reference: TianZLiMQiuMSunYSuSBlock-DEF: a secure digital evidence framework using blockchainInform Sci201949115116510.1016/j.ins.2019.04.011
– reference: Christoph Aldejohann, Jonas Maasmann, Willi Horenkamp, Fritz Rettberg, Christian Rehtanz. Testing environment for vehicle to grid (V2G) applications for investigating a voltage stability support method. In IEEE Transportation and Electrification Conference and Expo (ITEC), Dearborn 2014
– volume: 30
  start-page: 2314
  issue: 11-12
  year: 2007
  ident: 1589_CR29
  publication-title: J Comput Commun
  doi: 10.1016/j.comcom.2007.04.009
– volume: 491
  start-page: 151
  year: 2019
  ident: 1589_CR27
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.04.011
– ident: 1589_CR6
  doi: 10.1109/ISGTEUROPE.2010.5638947
– ident: 1589_CR10
  doi: 10.1145/1161064.1161084
– ident: 1589_CR30
  doi: 10.1016/j.adhoc.2006.05.012
– ident: 1589_CR24
– ident: 1589_CR22
  doi: 10.1109/TII.2019.2938778
– volume: 45
  start-page: 126
  issue: 11
  year: 2007
  ident: 1589_CR31
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2007.4378332
– volume: 15
  start-page: 60
  issue: 4
  year: 2008
  ident: 1589_CR32
  publication-title: IEEE Wireless Commun Mag
  doi: 10.1109/MWC.2008.4599222
– ident: 1589_CR23
  doi: 10.1109/ITEC.2014.6861812
– volume: 8
  start-page: 1223
  issue: 3
  year: 2009
  ident: 1589_CR33
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2009.060598
– volume: 68
  start-page: 5971
  issue: 6
  year: 2019
  ident: 1589_CR28
  publication-title: IEEE Trans Vehicular Technol
  doi: 10.1109/TVT.2019.2910217
– start-page: 208
  volume-title: Intelligent Information and Database Systems
  year: 2012
  ident: 1589_CR4
  doi: 10.1007/978-3-642-28487-8_21
– volume: 9
  start-page: 437
  issue: 3
  year: 2019
  ident: 1589_CR19
  publication-title: Appl Sci
  doi: 10.3390/app9030437
– volume: 25
  start-page: 371
  issue: 1
  year: 2010
  ident: 1589_CR5
  publication-title: IEEE Transact Power Systems
  doi: 10.1109/TPWRS.2009.2036481
– volume: 6
  start-page: 1584
  issue: 2
  year: 2019
  ident: 1589_CR11
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2846624
– volume: 28
  start-page: 894
  issue: 2
  year: 2013
  ident: 1589_CR21
  publication-title: IEEE Transact Power Delivery
  doi: 10.1109/TPWRD.2012.2236364
– ident: 1589_CR1
  doi: 10.1109/JPROC.2010.2066250
– ident: 1589_CR7
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1589_CR20
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2018/7943586
– ident: 1589_CR9
– volume: 6
  start-page: 35355
  year: 2018
  ident: 1589_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2846590
– ident: 1589_CR25
  doi: 10.1109/APEC.2011.5744627
– ident: 1589_CR3
– volume: 18
  start-page: 4486
  issue: 12
  year: 2018
  ident: 1589_CR14
  publication-title: Sensors
  doi: 10.3390/s18124486
– volume: 78
  start-page: 30111
  issue: 21
  year: 2018
  ident: 1589_CR15
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6938-9
– volume: 6
  start-page: 74854
  year: 2018
  ident: 1589_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881422
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1589_CR12
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2018/5823439
– volume: 95
  start-page: 212
  year: 2019
  ident: 1589_CR2
  publication-title: Future Generation Comput Syst
  doi: 10.1016/j.future.2018.12.054
– volume: 15
  start-page: 4285
  issue: 7
  year: 2019
  ident: 1589_CR26
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2907754
– ident: 1589_CR18
  doi: 10.1109/DSC.2018.00137
– volume: 18
  start-page: 2440
  issue: 8
  year: 2018
  ident: 1589_CR17
  publication-title: Sensors.
  doi: 10.3390/s18082440
– ident: 1589_CR8
SSID ssj0033492
Score 2.3340766
Snippet Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving...
Abstract Electric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Behavior
Charging scheduling
Communications Engineering
Computer simulation
Data collection
Digital twin
Digital twins
Driving
Electric power distribution
Electric vehicle
Electric vehicle charging
Electric vehicles
Energy consumption
Engineering
Industrial development
Information Systems Applications (incl.Internet)
Infrastructure
Internet of Vehicles
Maintenance costs
Mobility
Modelling
Multi-modal Sensor Data Fusion in Internet of Things
Networks
Queues
Route selection
Signal,Image and Speech Processing
Stress concentration
Time series
Traffic planning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPrG6Sg6elLLNY_M4qih7Wjyo7C00yVQXZBVb9e-bpK0vUC_eSprAMPna-SaPbxA6rCCuJnCSK3A654KI3MaTOVYWpbY6NvBUbEJOJmo61ZefSn3FM2GtPHDruGGgyJVjkaWzimtLNbVAi1JJ4MpLmq75FlL3yVT7D2ZRc6_bwyRKDGvCAs5C2qxzMgqWqC9RKIn1f2GY3zZFU6y5WEOrHUnEJ61x62gB5hto5ZN04CYax7sbOOIHatzftceprk14j-PyKvaz21gSBDevszkO5BS3y3_Q4IcK38BdOhG3ha4vzq_OxnlXFSF3XPAmd8wTXRXWlpVVQmnlAm3xEEKtr6hWQvgSPJUVAwYjEp5gJK1gUgFhpeCSbaPF-cMcdhCmmmvpS2Itsdxpb51yzodwRUtuuYcMFb2XjOskw2PlinuTUgclTOtYExxromONytDR-5DHVi_jt86n0fXvHaPUdWoIADAdAMxfAMjQoJ84031_dRhEQ2obyBbL0HE_mR-vf7Ro9z8s2kPLNEGN5kQM0GLz9Az7aMm9NLP66SAB9Q3x9Ohg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTgMhkPg66MG3sb7CwZNmY3mUx1GNxlPjQU1vZIFZbWJa01319wV2tz6iJnojMBAyMzAzMA-EDguIrwmcZAqczrggIrPRM8fKbq6tjh08FZuQ_b4aDPR1E8ddtt7u7ZdkuqnTsVbipCQs8EowfXVGemE1NYvme0Tp6Md3HkMc6uuXxXR7zfflt9M-CaCUp_-TcvnlPzSJmcuVf21wFS03WiU-rdlgDc3AaB0tfcg1uIGuYrAHjgwHJW6D83EqhBPGcXyPxX54H2uI4Op1OMJBm8X1eyFUeFzgO3hILnSb6Pby4ub8KmvKKGSOC15ljnmii661eWGVUFq5oOd4CLLZF1QrIXwOnsqCAYMeCS3oSSuYVEBYLrhkW2huNB7BNsJUcy19TqwlljvtrVPO-SDfaM4t99BB3Ra3xjU5xmOpi0eTbA0lTI0kE5BkIpKM6qCj6ZSnOsHGb8BnkWBTwJgbO3WMJ_emOWomGFWFY9GuYwXXlmpqgXZzJYErL2lYZK8lt2kObBkm0WALB-2MddBxS9734R93tPMn6F20SBN_0IyIPTRXTZ5hHy24l2pYTg4SH78Be7bsfg
  priority: 102
  providerName: Springer Nature
Title Time series behavior modeling with digital twin for Internet of Vehicles
URI https://link.springer.com/article/10.1186/s13638-019-1589-8
https://www.proquest.com/docview/2327214393
https://doaj.org/article/230fc362593f49b292be20a87e48d728
Volume 2019
WOSCitedRecordID wos000510406900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1687-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033492
  issn: 1687-1499
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoywEO7IiBduQDJ5DV8TJeThWtWhUhRhECVLhY8ZJ2JDRTJgH-ft_zJC2tRC9cosh2LCvv2W-x_X2EvG4yZhMUZzZHx5TmmgU8mRPMpHbBYYEqZBNmNrMnJ67qE25tf6xyWBPLQp2WEXPku2D5IVgB8yn3zn8yZI3C3dWeQmODbCFKAlI3VNPvw0osEXkPAy4NE4krI_pdTW71bsslaB4E0o7xKYzNXrNLBb7_ms95Y5u0WJ-jh_877kfkQe930ndrRXlM7uTFE3L_LzTCp-QYr4NQVMnc0uH6Pi1UOVBPMWNL0_wUWUZo92e-oODv0nVGMXd02dCv-awcsntGvhwdfj44Zj3RAotKq45FmbhrJiHUTbDaOhvBE0oZrHdqhLNapzonYRqZZZ5yeMtTE7Q0NnNZa2Xkc7K5WC7yC0KFU86kmofAg4ouhWhjTGABRa2CSnlEJsNv9rFHIUcyjB--RCNW-7VkPEjGo2S8HZE3l5-cryE4bmu8j7K7bIjo2aVguTr1_WT0EHY1UWLkJxvlgnAiZDGprcnKJiOgk-1Blr6f0q2_EuSIvB204ar6nyN6eXtnr8g9UbRQMK63yWa3-pV3yN34u5u3qzHZ2j-cVZ_GZONAqHFJGMDzg2HjoulQX73_WH27AKaQ_yM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VggQceKMGCvgAF5DV-BE_DgjxqlKlRBwK6s2sH1siVUnJLlT8KX4jHme3pUj01gO3le21du1vZjxjez6Ap3XCaIJk1KRgqVRMUY8nc7weVtZbLJCFbEJPp2Z_335cg1_9XRg8VtnrxKKo4yJgjHwrW_7srGTzKV4dfaPIGoW7qz2FxgoWk_TzOLtszcudd3l-n3G-_X7v7Zh2rAI0SCVbGkRkth56X9XeKGNNyGY_pmyqYs2tUSpWKXJdiyTSiOWnNNJeCW0SE5WSWuR-L8FlKYxGuZpo2mt-gZn-0MFTWXCZ1LzbRWVGbTVMZKRnx91SNspjYc7YwUIXcGaN-9e2bLF22zf_t3G6BTe6dTV5vRKE27CW5nfg-h_ZFu_CGK-7EBS51JA-PQEpVEC5nmBEmsTZAbKokPZ4Nid5PU9WEdPUkkVNPqev5RDhPfh0Ib9yH9bni3naAMKttDpWzHvmZbDRBxNCzBaeV9LLmAYw7KfVhS7LOpJ9HLribRnlVkhwGQkOkeDMAJ6fvHK0SjFyXuM3iJWThpgdvBQslgeuUzYuu5V1EOjZilpazy33iQ8ro5M0UfPcyWaPHdeprMadAmcAL3r0nVb_84senN_ZE7g63vuw63Z3ppOHcI0XCeCUqU1Yb5ff0yO4En60s2b5uMgSgS8XDcrf11RWbw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOvBFLC_gAF1C068f6cagQUFatilZ7AFRxMfEjZSW0WzaBir_WX9cZJ2kpEr31wC2yHSuxv3l6PEPI8yqhN0GywqRgC6mYKjxG5ng9Kq232CBzsQk9nZr9fTtbI8f9XRgMq-x5YmbUcRnQRz4EyQ_GCohPMay6sIjZ9uT14Y8CK0jhSWtfTqOFyF76fQTmW721uw17_YLzyfuP73aKrsJAEaSSTRFEZLYaeV9W3ihjTQAVICYQW7Hi1igVyxS5rkQSaczgKY21V0KbxESppBYw7xVyVYONieGEs_GXXgoIzPqHxp4CImZS8-5ElRk1rJkA1IMRbws2hnUx52RiLh1wTt_964g2S77J7f95ze6QW52-Td-0BHKXrKXFPXLzjyyM98kOXoOhSIqppn3aAppLBEE_RU81jfMDrK5Cm6P5goKeT1tPamrosqKf07ccXPiAfLqUX3lI1hfLRXpEKLfS6lgy75mXwUYfTAgRJD8vpZcxDcio32IXuuzrWATku8tWmFGuRYUDVDhEhTMD8vL0lcM29chFg98ibk4HYtbw3LBcHbiOCTkwN6sg0OIVlbSeW-4TH5VGJ2mi5jDJZo8j17Gy2p2BaEBe9Ug86_7nFz2-eLJn5Dpg0X3Yne5tkBs8EwMvmNok683qZ3pCroVfzbxePc1kRcnXy8bkCXH2X5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+behavior+modeling+with+digital+twin+for+Internet+of+Vehicles&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Zhang%2C+Tianle&rft.au=Liu%2C+Xiangtao&rft.au=Luo%2C+Zongwei&rft.au=Dong%2C+Fuqiang&rft.date=2019-12-16&rft.pub=Springer+Nature+B.V&rft.issn=1687-1472&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs13638-019-1589-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon