Improved Bounds for the Symmetric Rendezvous Value on the Line

A notorious open problem in the field of rendezvous search is to decide the rendezvous value of the symmetric rendezvous search problem on the line, when the initial distance between the two players is two. We show that the symmetric rendezvous value is within the interval (4.1520, 4.2574), which co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research Jg. 56; H. 3; S. 772 - 782
Hauptverfasser: Han, Qiaoming, Du, Donglei, Vera, Juan, Zuluaga, Luis F
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Linthicum, MD INFORMS 01.05.2008
Institute for Operations Research and the Management Sciences
Schlagworte:
ISSN:0030-364X, 1526-5463
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A notorious open problem in the field of rendezvous search is to decide the rendezvous value of the symmetric rendezvous search problem on the line, when the initial distance between the two players is two. We show that the symmetric rendezvous value is within the interval (4.1520, 4.2574), which considerably improves the previous best-known result (3.9546, 4.3931). To achieve the improved bounds, we call upon results from absorbing Markov chain theory and mathematical programming theory-particularly fractional quadratic programming and semidefinite programming. Moreover, we also establish some important properties of this problem, which could be of independent interest and useful for resolving this problem completely. Finally, we conjecture that the symmetric rendezvous value is asymptotically equal to 4.25 based on our numerical calculations.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1070.0439