Best reduction of the quadratic semi-assignment problem

We consider the quadratic semi-assignment problem in which we minimize a quadratic pseudo-Boolean function F subject to the semi-assignment constraints. We propose in this paper a linear programming method to obtain the best reduction of this problem, i.e. to compute the greatest constant c such tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 109; číslo 3; s. 197 - 213
Hlavní autoři: Billionnet, Alain, Elloumi, Sourour
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 2001
Amsterdam Elsevier
New York, NY
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the quadratic semi-assignment problem in which we minimize a quadratic pseudo-Boolean function F subject to the semi-assignment constraints. We propose in this paper a linear programming method to obtain the best reduction of this problem, i.e. to compute the greatest constant c such that F is equal to c plus F′ for all feasible solutions, F′ being a quadratic pseudo-Boolean function with nonnegative coefficients. Thus constant c can be viewed as a generalization of the height of an unconstrained quadratic 0–1 function introduced in (Hammer et al., Math. Program. 28 (1984) 121–155), to constrained quadratic 0–1 optimization. Finally, computational experiments proving the practical usefulness of this reduction are reported.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(00)00257-2