Best reduction of the quadratic semi-assignment problem
We consider the quadratic semi-assignment problem in which we minimize a quadratic pseudo-Boolean function F subject to the semi-assignment constraints. We propose in this paper a linear programming method to obtain the best reduction of this problem, i.e. to compute the greatest constant c such tha...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 109; číslo 3; s. 197 - 213 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
2001
Amsterdam Elsevier New York, NY |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the quadratic semi-assignment problem in which we minimize a quadratic pseudo-Boolean function
F subject to the semi-assignment constraints. We propose in this paper a linear programming method to obtain the best reduction of this problem, i.e. to compute the greatest constant
c such that
F is equal to
c plus
F′ for all feasible solutions,
F′ being a quadratic pseudo-Boolean function with nonnegative coefficients. Thus constant
c can be viewed as a generalization of the height of an unconstrained quadratic 0–1 function introduced in (Hammer et al., Math. Program. 28 (1984) 121–155), to constrained quadratic 0–1 optimization. Finally, computational experiments proving the practical usefulness of this reduction are reported. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(00)00257-2 |