Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors

Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transisto...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 27; no. 5; pp. np - n/a
Main Authors: Feng, Ping, Xu, Weiwei, Yang, Yi, Wan, Xiang, Shi, Yi, Wan, Qing, Zhao, Jianwen, Cui, Zheng
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.02.2017
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm2 V−1 s–1) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired‐pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications.
AbstractList Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility ([asymp]269 cm2 V-1 s-1) are proposed for artificial synapse application. Some important synaptic behaviors including paired-pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems.
Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm2 V−1 s–1) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired‐pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications.
Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm 2 V −1 s –1 ) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems.
Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility ( approximately 269 cm super(2) V super(-1) s super(-1)) are proposed for artificial synapse application. Some important synaptic behaviors including paired-pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired-pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications.
Author Shi, Yi
Xu, Weiwei
Wan, Qing
Cui, Zheng
Wan, Xiang
Feng, Ping
Zhao, Jianwen
Yang, Yi
Author_xml – sequence: 1
  givenname: Ping
  surname: Feng
  fullname: Feng, Ping
  organization: Nanjing University
– sequence: 2
  givenname: Weiwei
  surname: Xu
  fullname: Xu, Weiwei
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Nanjing University
– sequence: 4
  givenname: Xiang
  surname: Wan
  fullname: Wan, Xiang
  organization: Nanjing University
– sequence: 5
  givenname: Yi
  surname: Shi
  fullname: Shi, Yi
  organization: Nanjing University
– sequence: 6
  givenname: Qing
  surname: Wan
  fullname: Wan, Qing
  email: wanqing@nju.edu.cn
  organization: Nanjing University
– sequence: 7
  givenname: Jianwen
  surname: Zhao
  fullname: Zhao, Jianwen
  email: jwzhao2011@sinano.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Zheng
  surname: Cui
  fullname: Cui, Zheng
  email: zcui2009@sinano.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkM9KxDAQh4Mo-PfqueDFy66ZNG3To66uCrp62AVvIU2nbKRN1qRV9uYj-Iw-iZXVFQTxNDPM9w3Db5dsWmeRkEOgQ6CUnaiyaoaMQko559kG2YEU0kFMmdhc9_CwTXZDeKQUsizmO2R2741tsYwm2HnXOL-YGx2d47PRGKIzFfqVs9E3NVK-6MeJsq7tCoymc2PfX9_Gpm6iqVc2mNA6H_bJVqXqgAdfdY_MxhfT0dXg5u7yenR6M9A85dkgxqRiFc2LjPKUAheCArKkLFmOUHJdaEQsVZHGmiOjCWgUVSUS4EmRcxTxHjle3V1499RhaGVjgsa6VhZdFyQIwSHmCYUePfqFPrrO2_47CTmjPGYiz3uKryjtXQgeK6lNq1rjbOuVqSVQ-Zm1_MxarrPuteEvbeFNo_zybyFfCS-mxuU_tDw9H9_-uB85WJSh
CitedBy_id crossref_primary_10_1039_D2NH00089J
crossref_primary_10_1038_s41598_023_33752_5
crossref_primary_10_1039_D5TC00252D
crossref_primary_10_1016_j_joule_2021_01_005
crossref_primary_10_1002_advs_202103494
crossref_primary_10_1038_s41565_020_0647_z
crossref_primary_10_1063_5_0131063
crossref_primary_10_1002_adfm_202304000
crossref_primary_10_1016_j_carbon_2021_02_046
crossref_primary_10_3390_nano14070584
crossref_primary_10_1038_s41467_021_21890_1
crossref_primary_10_1063_5_0092968
crossref_primary_10_1002_smll_202000041
crossref_primary_10_1016_j_nanoen_2022_107744
crossref_primary_10_1016_j_nanoen_2021_106654
crossref_primary_10_1016_j_carbon_2018_03_058
crossref_primary_10_1002_adfm_201903700
crossref_primary_10_1002_admt_202300187
crossref_primary_10_1039_D3MH00216K
crossref_primary_10_3390_mi16050554
crossref_primary_10_1109_TED_2023_3278616
crossref_primary_10_3390_s22114000
crossref_primary_10_1063_5_0199941
crossref_primary_10_1002_pssr_202100072
crossref_primary_10_1007_s11432_023_3966_8
crossref_primary_10_1016_j_snb_2022_131633
crossref_primary_10_1016_j_nanoen_2020_105156
crossref_primary_10_1016_j_orgel_2017_05_017
crossref_primary_10_1002_aelm_201800556
crossref_primary_10_1016_j_mtphys_2020_100264
crossref_primary_10_1002_adfm_201804123
crossref_primary_10_1016_j_carbon_2019_03_003
crossref_primary_10_1063_5_0133146
crossref_primary_10_1007_s12274_021_3986_7
crossref_primary_10_1088_1361_6463_ae048b
crossref_primary_10_1002_inf2_12198
crossref_primary_10_1021_acsaelm_5c01058
crossref_primary_10_3390_electronics12071596
crossref_primary_10_1002_adfm_201902273
crossref_primary_10_1063_5_0188601
crossref_primary_10_3390_polym12071548
crossref_primary_10_1016_j_orgel_2021_106196
crossref_primary_10_1038_s41598_022_07505_9
crossref_primary_10_1088_2058_8585_ac039f
crossref_primary_10_1088_2515_7639_ab8270
crossref_primary_10_1002_sdtp_13535
crossref_primary_10_1016_j_mtphys_2021_100393
crossref_primary_10_1016_j_sse_2022_108257
crossref_primary_10_1002_qute_202100072
crossref_primary_10_1002_smll_201900695
crossref_primary_10_1088_2058_8585_abee2d
crossref_primary_10_1002_aisy_202400760
crossref_primary_10_1002_aisy_202000154
crossref_primary_10_1002_adma_201800750
crossref_primary_10_1016_j_orgel_2019_07_028
crossref_primary_10_1016_j_apmt_2023_101885
crossref_primary_10_1016_j_talanta_2024_126285
crossref_primary_10_1109_LED_2022_3201948
crossref_primary_10_1016_j_nanoms_2023_01_003
crossref_primary_10_1088_1361_6463_aacd99
crossref_primary_10_1109_LED_2023_3242646
crossref_primary_10_1002_aelm_202200343
crossref_primary_10_1002_smll_202406402
crossref_primary_10_1002_adfm_201801545
crossref_primary_10_1002_aelm_202100336
crossref_primary_10_1038_s41598_021_88396_0
crossref_primary_10_1002_adfm_201800854
crossref_primary_10_1016_j_carbon_2020_04_096
crossref_primary_10_1016_j_orgel_2020_105870
crossref_primary_10_3390_electronics13061148
crossref_primary_10_1002_smm2_1154
crossref_primary_10_1039_D0QM00371A
crossref_primary_10_1002_admt_202000228
crossref_primary_10_1002_adma_202504807
crossref_primary_10_3390_bios14030150
crossref_primary_10_1039_D4NR00904E
crossref_primary_10_1002_adfm_202303970
crossref_primary_10_1109_TMAG_2022_3233640
crossref_primary_10_1088_1361_6528_ab5080
crossref_primary_10_3390_polym15020293
crossref_primary_10_1002_adom_202400358
crossref_primary_10_1016_j_orgel_2019_105518
crossref_primary_10_1002_smtd_202100263
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1080_14686996_2022_2152290
crossref_primary_10_3389_fnins_2021_690950
crossref_primary_10_1007_s13391_024_00494_z
crossref_primary_10_1002_admt_201800658
crossref_primary_10_1063_5_0065730
crossref_primary_10_1002_adfm_201703938
crossref_primary_10_1002_adma_201805454
crossref_primary_10_1088_1361_6528_aae470
crossref_primary_10_1016_j_orgel_2019_105409
crossref_primary_10_1088_1361_6528_acd11e
crossref_primary_10_1002_adma_201905654
crossref_primary_10_1016_j_nanoen_2024_109891
crossref_primary_10_1063_1_5045521
crossref_primary_10_1002_adma_202308912
crossref_primary_10_1007_s40843_019_9437_9
crossref_primary_10_1016_j_nanoen_2018_10_018
crossref_primary_10_1039_D3NR02780E
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1016_j_enrev_2023_100014
crossref_primary_10_1002_advs_201700965
crossref_primary_10_1109_TED_2020_3040208
crossref_primary_10_1002_aisy_201900003
crossref_primary_10_1039_D0MH01520B
crossref_primary_10_1002_adfm_201908901
crossref_primary_10_1002_aelm_201700521
crossref_primary_10_1002_smll_201900010
crossref_primary_10_1088_1674_4926_42_1_013103
crossref_primary_10_1016_j_orgel_2020_105961
crossref_primary_10_1039_D1NR00148E
crossref_primary_10_1038_s41598_020_73705_w
Cites_doi 10.1038/ncomms4158
10.1146/annurev.physiol.64.092501.114547
10.1002/adma.201203680
10.1039/C1JM14773K
10.1016/j.carbon.2015.07.072
10.1039/C4NR05471G
10.1063/1.3457785
10.1039/c2ra22507g
10.1002/adma.201000282
10.1007/s12311-009-0140-6
10.1021/jp4055022
10.1063/1.4804983
10.1016/j.neucom.2010.03.021
10.1002/adma.200904054
10.1021/am502168x
10.1063/1.1854721
10.1038/nrn2558
10.1039/C6NR00015K
10.1063/1.1564291
10.1002/adma.201504958
10.1557/mrs2010.553
10.1109/TED.2011.2147791
10.1021/acsami.5b10195
10.1002/adma.201203116
10.1016/j.neuron.2013.10.022
10.1021/acs.nanolett.5b04549
10.1002/adma.200900860
10.1002/adfm.200801633
10.1007/s10853-015-9121-y
10.1126/science.1160309
10.1038/nnano.2010.232
10.1038/ncomms1737
10.1021/nl904092h
10.1002/smll.201203154
10.1146/annurev-neuro-060909-153204
10.1088/0957-4484/24/38/382001
10.1038/nmat2459
10.1038/srep01619
10.1016/j.neuron.2013.10.013
10.1002/adma.201202790
10.1016/S0166-2236(00)01835-X
10.1126/science.1222453
10.1002/adma.201502719
10.1021/nl203701g
10.1038/ncomms3676
10.1021/nl902522f
10.1021/nl3038773
10.1038/nature03010
10.1109/JPROC.2011.2166369
10.1021/nl401934a
10.1021/nl8038579
10.1063/1.3640806
10.1038/nn0604-567
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201604447
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201604447
ADFM201604447
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51502131; 91123034; 61102046
– fundername: National Key Research and Development Program of China
  funderid: 2016YFB0401100
– fundername: Basic Research Programme of Jiangsu Province
  funderid: BK2011364
– fundername: Basic Research Programme of Suzhou Institute of Nanotech and Nano‐bionics
  funderid: Y5AAY21001
– fundername: National Science Foundation for Distinguished Young Scholars of China
  funderid: 61425020
– fundername: Zhejiang Provincial Natural Science Fund
  funderid: LR13F040001
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4647-3e5f2f09b70460148801e25dd29e1d4cbceeedab63c4e2051ce8ff85145b94e83
IEDL.DBID DRFUL
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394677300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Tue Sep 30 23:24:41 EDT 2025
Fri Jul 25 06:40:27 EDT 2025
Sat Nov 29 07:24:05 EST 2025
Tue Nov 18 21:00:18 EST 2025
Wed Jan 22 16:56:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4647-3e5f2f09b70460148801e25dd29e1d4cbceeedab63c4e2051ce8ff85145b94e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920432899
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_miscellaneous_1884134501
proquest_journals_1920432899
crossref_citationtrail_10_1002_adfm_201604447
crossref_primary_10_1002_adfm_201604447
wiley_primary_10_1002_adfm_201604447_ADFM201604447
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 33
2010; 10
2013; 3
2012; 100
2013; 25
2013; 4
2009; 21
2010; 35
2013; 24
2015; 50
2015; 94
2004; 7
2005; 86
2013; 102
2011; 58
2008; 321
2001; 24
2016; 16
2012; 12
2011; 110
2013; 9
2004; 431
2010; 22
2014; 5
2012; 3
2015; 27
2009; 10
2013; 339
2002; 64
2013; 13
2013; 117
2013; 80
2009; 9
1985
2009; 8
2003; 82
2016; 28
2009; 19
2010; 5
2014; 6
2012; 22
2010; 74
2016; 8
2010; 96
2010; 9
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Kandel E. R. (e_1_2_6_53_1) 1985
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
Cui S. (e_1_2_6_26_1) 2015; 27
References_xml – volume: 4
  start-page: 2676
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2228
  year: 2010
  publication-title: Adv. Mater.
– year: 1985
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 10
  start-page: 1297
  year: 2010
  publication-title: Nano Lett.
– volume: 8
  start-page: 3050
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 80
  start-page: 675
  year: 2013
  publication-title: Neuron
– volume: 5
  start-page: 3158
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 113
  year: 2009
  publication-title: Nat. Rev. Neurosci.
– volume: 102
  start-page: 183513
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 853
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 1046
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 567
  year: 2004
  publication-title: Nat. Neurosci.
– volume: 27
  start-page: 5599
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1619
  year: 2013
  publication-title: Sci. Rep.
– volume: 13
  start-page: 954
  year: 2013
  publication-title: Nano Lett.
– volume: 74
  start-page: 239
  year: 2010
  publication-title: Neurocomputing
– volume: 86
  start-page: 033105
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 1188
  year: 2013
  publication-title: Small
– volume: 94
  start-page: 903
  year: 2015
  publication-title: Carbon
– volume: 117
  start-page: 18243
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 071101
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 14891
  year: 2014
  publication-title: Nanoscale
– volume: 80
  start-page: 691
  year: 2013
  publication-title: Neuron
– volume: 9
  start-page: 4285
  year: 2009
  publication-title: Nano Lett.
– volume: 12
  start-page: 758
  year: 2012
  publication-title: Nano Lett.
– volume: 58
  start-page: 2729
  year: 2011
  publication-title: IEEE Trans. Electron Dev.
– volume: 8
  start-page: 494
  year: 2009
  publication-title: Nat. Mater.
– volume: 100
  start-page: 2071
  year: 2012
  publication-title: Proc. IEEE
– volume: 22
  start-page: 2448
  year: 2010
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2051
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 64
  start-page: 355
  year: 2002
  publication-title: Annu. Rev.Physiol.
– volume: 8
  start-page: 4588
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 1509
  year: 2015
  publication-title: Prog. Chem.
– volume: 16
  start-page: 721
  year: 2016
  publication-title: Nano Lett.
– volume: 3
  start-page: 3169
  year: 2013
  publication-title: RSC Adv.
– volume: 21
  start-page: 3730
  year: 2009
  publication-title: Adv. Mater.
– volume: 96
  start-page: 252107
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 3864
  year: 2013
  publication-title: Nano Lett.
– volume: 24
  start-page: 381
  year: 2001
  publication-title: Trends Neurosci.
– volume: 25
  start-page: 1774
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9997
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1822
  year: 2013
  publication-title: Adv. Mater.
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 82
  start-page: 2145
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 431
  start-page: 796
  year: 2004
  publication-title: Nature
– volume: 24
  start-page: 382001
  year: 2013
  publication-title: Nanotechnology
– volume: 28
  start-page: 4397
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1872
  year: 2009
  publication-title: Nano Lett.
– volume: 3
  start-page: 732
  year: 2012
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1693
  year: 2013
  publication-title: Adv. Mater.
– volume: 50
  start-page: 5641
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 9
  start-page: 56
  year: 2010
  publication-title: Cerebellum
– volume: 35
  start-page: 306
  year: 2010
  publication-title: MRS Bull.
– volume: 33
  start-page: 349
  year: 2010
  publication-title: Annu. Rev. Neurosci.
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms4158
– ident: e_1_2_6_50_1
  doi: 10.1146/annurev.physiol.64.092501.114547
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201203680
– ident: e_1_2_6_43_1
  doi: 10.1039/C1JM14773K
– ident: e_1_2_6_44_1
  doi: 10.1016/j.carbon.2015.07.072
– ident: e_1_2_6_40_1
  doi: 10.1039/C4NR05471G
– ident: e_1_2_6_47_1
  doi: 10.1063/1.3457785
– ident: e_1_2_6_11_1
  doi: 10.1039/c2ra22507g
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201000282
– ident: e_1_2_6_55_1
  doi: 10.1007/s12311-009-0140-6
– ident: e_1_2_6_41_1
  doi: 10.1021/jp4055022
– ident: e_1_2_6_12_1
  doi: 10.1063/1.4804983
– volume-title: Principles of Neural Science
  year: 1985
  ident: e_1_2_6_53_1
– ident: e_1_2_6_1_1
  doi: 10.1016/j.neucom.2010.03.021
– ident: e_1_2_6_22_1
  doi: 10.1002/adma.200904054
– ident: e_1_2_6_45_1
  doi: 10.1021/am502168x
– ident: e_1_2_6_33_1
  doi: 10.1063/1.1854721
– ident: e_1_2_6_51_1
  doi: 10.1038/nrn2558
– ident: e_1_2_6_42_1
  doi: 10.1039/C6NR00015K
– ident: e_1_2_6_34_1
  doi: 10.1063/1.1564291
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201504958
– ident: e_1_2_6_30_1
  doi: 10.1557/mrs2010.553
– ident: e_1_2_6_54_1
  doi: 10.1109/TED.2011.2147791
– ident: e_1_2_6_19_1
  doi: 10.1021/acsami.5b10195
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201203116
– ident: e_1_2_6_49_1
  doi: 10.1016/j.neuron.2013.10.022
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.nanolett.5b04549
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.200900860
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.200801633
– ident: e_1_2_6_18_1
  doi: 10.1007/s10853-015-9121-y
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1160309
– ident: e_1_2_6_25_1
  doi: 10.1038/nnano.2010.232
– volume: 27
  start-page: 1509
  year: 2015
  ident: e_1_2_6_26_1
  publication-title: Prog. Chem.
– ident: e_1_2_6_10_1
  doi: 10.1038/ncomms1737
– ident: e_1_2_6_9_1
  doi: 10.1021/nl904092h
– ident: e_1_2_6_37_1
  doi: 10.1002/smll.201203154
– ident: e_1_2_6_52_1
  doi: 10.1146/annurev-neuro-060909-153204
– ident: e_1_2_6_6_1
  doi: 10.1088/0957-4484/24/38/382001
– ident: e_1_2_6_29_1
  doi: 10.1038/nmat2459
– ident: e_1_2_6_13_1
  doi: 10.1038/srep01619
– ident: e_1_2_6_48_1
  doi: 10.1016/j.neuron.2013.10.013
– ident: e_1_2_6_23_1
  doi: 10.1002/adma.201202790
– ident: e_1_2_6_4_1
  doi: 10.1016/S0166-2236(00)01835-X
– ident: e_1_2_6_31_1
  doi: 10.1126/science.1222453
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201502719
– ident: e_1_2_6_35_1
  doi: 10.1021/nl203701g
– ident: e_1_2_6_14_1
  doi: 10.1038/ncomms3676
– ident: e_1_2_6_36_1
  doi: 10.1021/nl902522f
– ident: e_1_2_6_39_1
  doi: 10.1021/nl3038773
– ident: e_1_2_6_5_1
  doi: 10.1038/nature03010
– ident: e_1_2_6_3_1
  doi: 10.1109/JPROC.2011.2166369
– ident: e_1_2_6_38_1
  doi: 10.1021/nl401934a
– ident: e_1_2_6_24_1
  doi: 10.1021/nl8038579
– ident: e_1_2_6_2_1
  doi: 10.1063/1.3640806
– ident: e_1_2_6_7_1
  doi: 10.1038/nn0604-567
SSID ssj0017734
Score 2.5829222
Snippet Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the...
Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Brain
carbon nanotube thin‐film transistors
Devices
Electronic devices
Electronics
Filtering
Filtration
Materials science
Neuromorphic computing
neuromorphic systems
printed electronics
Semiconductor devices
Spikes
Synapses
synaptic devices
Thin film transistors
Transistors
Voltage
Title Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604447
https://www.proquest.com/docview/1920432899
https://www.proquest.com/docview/1884134501
Volume 27
WOSCitedRecordID wos000394677300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BYYCBf0ShICMhMUVNHKdORqBEDFBViKJuURw7UqU2Qf1h5hF4Rp6Es5Om7YCQYIqsXBLrznf3OWd_Brhype0KOxDoSNyzGBWBFceebanUSVkqE-4Ynu7XR97p-P1-0F3axV_wQ1Q_3LRnmHitHTwWk-aCNDSWqd5J7rQ04xlfhw2Kg5fVYKP9HPYeq0oC50VlueXoNV5Of07caNPm6htWE9MCbS5jVpN0wt3_d3cPdkrASW6KEbIPayo7gO0lGsJD6HXHmjVCEsPUMcpR9YOEtJUJIuQW85wkeUbmUnfxWGAT43I-nQlF9NGfXx-f4WA4Iib1GeaRyRH0wvuXuwerPG7BSliLYahRXkpTtBvXxVJHe7ajqCclDZQjWSIwnyoZi5abMEXRmRPlpykiNuaJgCnfPYZalmfqBAhiOtfnHO2Nd6TyYxn4wsOpH155YNt1sOa6jpKSi1wfiTGMChZlGml1RZW66nBdyb8VLBw_SjbmpotKb5xEiGI18yBOLetwWd1GP9LFkThT-QxlfB_zOcNO1oEaQ_7ypeimHT5VrdO_PHQGW1SjBLMIvAG16XimzmEzeZ8OJuOLciR_A5TM8_U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdSDb3F11QiCp2Kbppv2qK5lxXURcWVvpWlSWFhb2Ydnf4K_0V_iJO1WPYggnkrItA0zmUcyky8AJ660XWEHAhWJexajIrDi2LMtlTopS2XCHYPT_djh3a7f7wd3ZTWhPgtT4ENUG25aM4y91gquN6TPPlFDY5nqo-ROU0Oe8XlYYDiXvBostO7DXqdKJXBepJabji7ycvoz5Eabnn3_wnfP9Blufg1ajdcJ1_5hvOuwWoac5LyYIxswp7JNWPkCRLgFvbuRxo2QxGB1POXI_EFCWsqYEXKBnk6SPCMzqst4JLCJljmfTIUi-vLP99e3cDB8Isb5GeyR8Tb0wquHy7ZVXrhgJazJ0NgoL6UpSo7rdKmjddtR1JOSBsqRLBHoUZWMRdNNmKKozony0xRjNuaJgCnf3YFalmdqFwhGda7POUoce6TyYxn4wsPFHz55YNt1sGbMjpISjVxfijGMChxlGml2RRW76nBa0T8XOBw_UjZmsotKfRxHGMdq7EFcXNbhuOpGTdLpkThT-RRpfB89OsNB1oEaSf7yp-i8Fd5Wrb2_vHQES-2H207Uue7e7MMy1TGDKQlvQG0ymqoDWExeJoPx6LCc1h87sPfl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED_xZ0LsYbANtI4CRpq0p4jEceLkEegiEKWq0Ir6FsWxLVVqk6p_9sxH4DPuk-zspCk8oEmIp8jKJbHu_Ls75-yfAX740vWFGwsEEg8cRkXsZFngOkp7mmmZc8_ydD90ea8XDYdxv15NaPbCVPwQzQ83gwzrrw3A1VTq8zVraCa12UruhYbyjG_CNgviELG53blPBt2mlMB5VVoOPbPIyxuumBtdev7yDS8j0zrdfJ602qiT7L1Df_fhU51ykotqjHyGDVV8gY_PiAi_wqA_M7wRkliujkmJyh_lpKOsGyGXGOkkKQuykrrKZgKb6JnLxVIoYg7__Pv4lIzGE2KDn-UemR_AIPn1--raqQ9ccHIWMnQ2KtBUo-W4KZd6BtueooGUNFaeZLnAiKpkJkI_Z4oinHMVaY05GwtEzFTkH8JWURbqGxDM6vyIc7Q43pEqymQciQAnf3jlseu2wFkpO81rNnJzKMY4rXiUaWrUlTbqasHPRn5a8XC8Ktle2S6t8ThPMY813IM4uWzBWXMbkWTKI1mhyiXKRBFGdIadbAG1lvzPl9KLTnLXtL6_5aFT2Ol3krR707s9gl1qUga7IrwNW4vZUh3Dh_zPYjSfndSj-h_RF_dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printed+Neuromorphic+Devices+Based+on+Printed+Carbon+Nanotube+Thin-Film+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Feng%2C+Ping&rft.au=Xu%2C+Weiwei&rft.au=Yang%2C+Yi&rft.au=Wan%2C+Xiang&rft.date=2017-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.201604447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon