Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors
Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transisto...
Saved in:
| Published in: | Advanced functional materials Vol. 27; no. 5; pp. np - n/a |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.02.2017
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm2 V−1 s–1) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems.
Printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired‐pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications. |
|---|---|
| AbstractList | Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility ([asymp]269 cm2 V-1 s-1) are proposed for artificial synapse application. Some important synaptic behaviors including paired-pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm2 V−1 s–1) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired‐pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications. Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual‐gate carbon‐nanotube thin‐film transistors with very high saturation field‐effect mobility (≈269 cm 2 V −1 s –1 ) are proposed for artificial synapse application. Some important synaptic behaviors including paired‐pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the same time, printed electronics have received considerable interest in recent years. Here, printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility ( approximately 269 cm super(2) V super(-1) s super(-1)) are proposed for artificial synapse application. Some important synaptic behaviors including paired-pulse facilitation (PPF), and signal filtering characteristics are successfully emulated in such printed artificial synapses. The PPF index can be modulated by spike width and spike interval of presynaptic impulse voltages. The results present a printable approach to fabricate artificial synaptic devices for neuromorphic systems. Printed dual-gate carbon-nanotube thin-film transistors with very high saturation field-effect mobility are proposed for artificial synapse application. Important synaptic behaviors including paired-pulse facilitation and signal filtering characteristics are successfully emulated. The PPF index can be modulated by spike interval and spike width of presynaptic voltages. This work presents a printable approach to fabricate synaptic devices for neuromorphic system applications. |
| Author | Shi, Yi Xu, Weiwei Wan, Qing Cui, Zheng Wan, Xiang Feng, Ping Zhao, Jianwen Yang, Yi |
| Author_xml | – sequence: 1 givenname: Ping surname: Feng fullname: Feng, Ping organization: Nanjing University – sequence: 2 givenname: Weiwei surname: Xu fullname: Xu, Weiwei organization: Chinese Academy of Sciences – sequence: 3 givenname: Yi surname: Yang fullname: Yang, Yi organization: Nanjing University – sequence: 4 givenname: Xiang surname: Wan fullname: Wan, Xiang organization: Nanjing University – sequence: 5 givenname: Yi surname: Shi fullname: Shi, Yi organization: Nanjing University – sequence: 6 givenname: Qing surname: Wan fullname: Wan, Qing email: wanqing@nju.edu.cn organization: Nanjing University – sequence: 7 givenname: Jianwen surname: Zhao fullname: Zhao, Jianwen email: jwzhao2011@sinano.ac.cn organization: Chinese Academy of Sciences – sequence: 8 givenname: Zheng surname: Cui fullname: Cui, Zheng email: zcui2009@sinano.ac.cn organization: Chinese Academy of Sciences |
| BookMark | eNqFkM9KxDAQh4Mo-PfqueDFy66ZNG3To66uCrp62AVvIU2nbKRN1qRV9uYj-Iw-iZXVFQTxNDPM9w3Db5dsWmeRkEOgQ6CUnaiyaoaMQko559kG2YEU0kFMmdhc9_CwTXZDeKQUsizmO2R2741tsYwm2HnXOL-YGx2d47PRGKIzFfqVs9E3NVK-6MeJsq7tCoymc2PfX9_Gpm6iqVc2mNA6H_bJVqXqgAdfdY_MxhfT0dXg5u7yenR6M9A85dkgxqRiFc2LjPKUAheCArKkLFmOUHJdaEQsVZHGmiOjCWgUVSUS4EmRcxTxHjle3V1499RhaGVjgsa6VhZdFyQIwSHmCYUePfqFPrrO2_47CTmjPGYiz3uKryjtXQgeK6lNq1rjbOuVqSVQ-Zm1_MxarrPuteEvbeFNo_zybyFfCS-mxuU_tDw9H9_-uB85WJSh |
| CitedBy_id | crossref_primary_10_1039_D2NH00089J crossref_primary_10_1038_s41598_023_33752_5 crossref_primary_10_1039_D5TC00252D crossref_primary_10_1016_j_joule_2021_01_005 crossref_primary_10_1002_advs_202103494 crossref_primary_10_1038_s41565_020_0647_z crossref_primary_10_1063_5_0131063 crossref_primary_10_1002_adfm_202304000 crossref_primary_10_1016_j_carbon_2021_02_046 crossref_primary_10_3390_nano14070584 crossref_primary_10_1038_s41467_021_21890_1 crossref_primary_10_1063_5_0092968 crossref_primary_10_1002_smll_202000041 crossref_primary_10_1016_j_nanoen_2022_107744 crossref_primary_10_1016_j_nanoen_2021_106654 crossref_primary_10_1016_j_carbon_2018_03_058 crossref_primary_10_1002_adfm_201903700 crossref_primary_10_1002_admt_202300187 crossref_primary_10_1039_D3MH00216K crossref_primary_10_3390_mi16050554 crossref_primary_10_1109_TED_2023_3278616 crossref_primary_10_3390_s22114000 crossref_primary_10_1063_5_0199941 crossref_primary_10_1002_pssr_202100072 crossref_primary_10_1007_s11432_023_3966_8 crossref_primary_10_1016_j_snb_2022_131633 crossref_primary_10_1016_j_nanoen_2020_105156 crossref_primary_10_1016_j_orgel_2017_05_017 crossref_primary_10_1002_aelm_201800556 crossref_primary_10_1016_j_mtphys_2020_100264 crossref_primary_10_1002_adfm_201804123 crossref_primary_10_1016_j_carbon_2019_03_003 crossref_primary_10_1063_5_0133146 crossref_primary_10_1007_s12274_021_3986_7 crossref_primary_10_1088_1361_6463_ae048b crossref_primary_10_1002_inf2_12198 crossref_primary_10_1021_acsaelm_5c01058 crossref_primary_10_3390_electronics12071596 crossref_primary_10_1002_adfm_201902273 crossref_primary_10_1063_5_0188601 crossref_primary_10_3390_polym12071548 crossref_primary_10_1016_j_orgel_2021_106196 crossref_primary_10_1038_s41598_022_07505_9 crossref_primary_10_1088_2058_8585_ac039f crossref_primary_10_1088_2515_7639_ab8270 crossref_primary_10_1002_sdtp_13535 crossref_primary_10_1016_j_mtphys_2021_100393 crossref_primary_10_1016_j_sse_2022_108257 crossref_primary_10_1002_qute_202100072 crossref_primary_10_1002_smll_201900695 crossref_primary_10_1088_2058_8585_abee2d crossref_primary_10_1002_aisy_202400760 crossref_primary_10_1002_aisy_202000154 crossref_primary_10_1002_adma_201800750 crossref_primary_10_1016_j_orgel_2019_07_028 crossref_primary_10_1016_j_apmt_2023_101885 crossref_primary_10_1016_j_talanta_2024_126285 crossref_primary_10_1109_LED_2022_3201948 crossref_primary_10_1016_j_nanoms_2023_01_003 crossref_primary_10_1088_1361_6463_aacd99 crossref_primary_10_1109_LED_2023_3242646 crossref_primary_10_1002_aelm_202200343 crossref_primary_10_1002_smll_202406402 crossref_primary_10_1002_adfm_201801545 crossref_primary_10_1002_aelm_202100336 crossref_primary_10_1038_s41598_021_88396_0 crossref_primary_10_1002_adfm_201800854 crossref_primary_10_1016_j_carbon_2020_04_096 crossref_primary_10_1016_j_orgel_2020_105870 crossref_primary_10_3390_electronics13061148 crossref_primary_10_1002_smm2_1154 crossref_primary_10_1039_D0QM00371A crossref_primary_10_1002_admt_202000228 crossref_primary_10_1002_adma_202504807 crossref_primary_10_3390_bios14030150 crossref_primary_10_1039_D4NR00904E crossref_primary_10_1002_adfm_202303970 crossref_primary_10_1109_TMAG_2022_3233640 crossref_primary_10_1088_1361_6528_ab5080 crossref_primary_10_3390_polym15020293 crossref_primary_10_1002_adom_202400358 crossref_primary_10_1016_j_orgel_2019_105518 crossref_primary_10_1002_smtd_202100263 crossref_primary_10_1002_adma_201902434 crossref_primary_10_1080_14686996_2022_2152290 crossref_primary_10_3389_fnins_2021_690950 crossref_primary_10_1007_s13391_024_00494_z crossref_primary_10_1002_admt_201800658 crossref_primary_10_1063_5_0065730 crossref_primary_10_1002_adfm_201703938 crossref_primary_10_1002_adma_201805454 crossref_primary_10_1088_1361_6528_aae470 crossref_primary_10_1016_j_orgel_2019_105409 crossref_primary_10_1088_1361_6528_acd11e crossref_primary_10_1002_adma_201905654 crossref_primary_10_1016_j_nanoen_2024_109891 crossref_primary_10_1063_1_5045521 crossref_primary_10_1002_adma_202308912 crossref_primary_10_1007_s40843_019_9437_9 crossref_primary_10_1016_j_nanoen_2018_10_018 crossref_primary_10_1039_D3NR02780E crossref_primary_10_1002_advs_202001778 crossref_primary_10_1016_j_enrev_2023_100014 crossref_primary_10_1002_advs_201700965 crossref_primary_10_1109_TED_2020_3040208 crossref_primary_10_1002_aisy_201900003 crossref_primary_10_1039_D0MH01520B crossref_primary_10_1002_adfm_201908901 crossref_primary_10_1002_aelm_201700521 crossref_primary_10_1002_smll_201900010 crossref_primary_10_1088_1674_4926_42_1_013103 crossref_primary_10_1016_j_orgel_2020_105961 crossref_primary_10_1039_D1NR00148E crossref_primary_10_1038_s41598_020_73705_w |
| Cites_doi | 10.1038/ncomms4158 10.1146/annurev.physiol.64.092501.114547 10.1002/adma.201203680 10.1039/C1JM14773K 10.1016/j.carbon.2015.07.072 10.1039/C4NR05471G 10.1063/1.3457785 10.1039/c2ra22507g 10.1002/adma.201000282 10.1007/s12311-009-0140-6 10.1021/jp4055022 10.1063/1.4804983 10.1016/j.neucom.2010.03.021 10.1002/adma.200904054 10.1021/am502168x 10.1063/1.1854721 10.1038/nrn2558 10.1039/C6NR00015K 10.1063/1.1564291 10.1002/adma.201504958 10.1557/mrs2010.553 10.1109/TED.2011.2147791 10.1021/acsami.5b10195 10.1002/adma.201203116 10.1016/j.neuron.2013.10.022 10.1021/acs.nanolett.5b04549 10.1002/adma.200900860 10.1002/adfm.200801633 10.1007/s10853-015-9121-y 10.1126/science.1160309 10.1038/nnano.2010.232 10.1038/ncomms1737 10.1021/nl904092h 10.1002/smll.201203154 10.1146/annurev-neuro-060909-153204 10.1088/0957-4484/24/38/382001 10.1038/nmat2459 10.1038/srep01619 10.1016/j.neuron.2013.10.013 10.1002/adma.201202790 10.1016/S0166-2236(00)01835-X 10.1126/science.1222453 10.1002/adma.201502719 10.1021/nl203701g 10.1038/ncomms3676 10.1021/nl902522f 10.1021/nl3038773 10.1038/nature03010 10.1109/JPROC.2011.2166369 10.1021/nl401934a 10.1021/nl8038579 10.1063/1.3640806 10.1038/nn0604-567 |
| ContentType | Journal Article |
| Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201604447 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201604447 ADFM201604447 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51502131; 91123034; 61102046 – fundername: National Key Research and Development Program of China funderid: 2016YFB0401100 – fundername: Basic Research Programme of Jiangsu Province funderid: BK2011364 – fundername: Basic Research Programme of Suzhou Institute of Nanotech and Nano‐bionics funderid: Y5AAY21001 – fundername: National Science Foundation for Distinguished Young Scholars of China funderid: 61425020 – fundername: Zhejiang Provincial Natural Science Fund funderid: LR13F040001 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4647-3e5f2f09b70460148801e25dd29e1d4cbceeedab63c4e2051ce8ff85145b94e83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 165 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394677300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Tue Sep 30 23:24:41 EDT 2025 Fri Jul 25 06:40:27 EDT 2025 Sat Nov 29 07:24:05 EST 2025 Tue Nov 18 21:00:18 EST 2025 Wed Jan 22 16:56:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4647-3e5f2f09b70460148801e25dd29e1d4cbceeedab63c4e2051ce8ff85145b94e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1920432899 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1884134501 proquest_journals_1920432899 crossref_citationtrail_10_1002_adfm_201604447 crossref_primary_10_1002_adfm_201604447 wiley_primary_10_1002_adfm_201604447_ADFM201604447 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 33 2010; 10 2013; 3 2012; 100 2013; 25 2013; 4 2009; 21 2010; 35 2013; 24 2015; 50 2015; 94 2004; 7 2005; 86 2013; 102 2011; 58 2008; 321 2001; 24 2016; 16 2012; 12 2011; 110 2013; 9 2004; 431 2010; 22 2014; 5 2012; 3 2015; 27 2009; 10 2013; 339 2002; 64 2013; 13 2013; 117 2013; 80 2009; 9 1985 2009; 8 2003; 82 2016; 28 2009; 19 2010; 5 2014; 6 2012; 22 2010; 74 2016; 8 2010; 96 2010; 9 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Kandel E. R. (e_1_2_6_53_1) 1985 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 Cui S. (e_1_2_6_26_1) 2015; 27 |
| References_xml | – volume: 4 start-page: 2676 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 2228 year: 2010 publication-title: Adv. Mater. – year: 1985 – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 10 start-page: 1297 year: 2010 publication-title: Nano Lett. – volume: 8 start-page: 3050 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 80 start-page: 675 year: 2013 publication-title: Neuron – volume: 5 start-page: 3158 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 113 year: 2009 publication-title: Nat. Rev. Neurosci. – volume: 102 start-page: 183513 year: 2013 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 853 year: 2010 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 1046 year: 2009 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 567 year: 2004 publication-title: Nat. Neurosci. – volume: 27 start-page: 5599 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 1619 year: 2013 publication-title: Sci. Rep. – volume: 13 start-page: 954 year: 2013 publication-title: Nano Lett. – volume: 74 start-page: 239 year: 2010 publication-title: Neurocomputing – volume: 86 start-page: 033105 year: 2005 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 1188 year: 2013 publication-title: Small – volume: 94 start-page: 903 year: 2015 publication-title: Carbon – volume: 117 start-page: 18243 year: 2013 publication-title: J. Phys. Chem. C – volume: 110 start-page: 071101 year: 2011 publication-title: J. Appl. Phys. – volume: 6 start-page: 14891 year: 2014 publication-title: Nanoscale – volume: 80 start-page: 691 year: 2013 publication-title: Neuron – volume: 9 start-page: 4285 year: 2009 publication-title: Nano Lett. – volume: 12 start-page: 758 year: 2012 publication-title: Nano Lett. – volume: 58 start-page: 2729 year: 2011 publication-title: IEEE Trans. Electron Dev. – volume: 8 start-page: 494 year: 2009 publication-title: Nat. Mater. – volume: 100 start-page: 2071 year: 2012 publication-title: Proc. IEEE – volume: 22 start-page: 2448 year: 2010 publication-title: Adv. Mater. – volume: 22 start-page: 2051 year: 2012 publication-title: J. Mater. Chem. – volume: 64 start-page: 355 year: 2002 publication-title: Annu. Rev.Physiol. – volume: 8 start-page: 4588 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 1509 year: 2015 publication-title: Prog. Chem. – volume: 16 start-page: 721 year: 2016 publication-title: Nano Lett. – volume: 3 start-page: 3169 year: 2013 publication-title: RSC Adv. – volume: 21 start-page: 3730 year: 2009 publication-title: Adv. Mater. – volume: 96 start-page: 252107 year: 2010 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 3864 year: 2013 publication-title: Nano Lett. – volume: 24 start-page: 381 year: 2001 publication-title: Trends Neurosci. – volume: 25 start-page: 1774 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 9997 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1822 year: 2013 publication-title: Adv. Mater. – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 82 start-page: 2145 year: 2003 publication-title: Appl. Phys. Lett. – volume: 431 start-page: 796 year: 2004 publication-title: Nature – volume: 24 start-page: 382001 year: 2013 publication-title: Nanotechnology – volume: 28 start-page: 4397 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 1872 year: 2009 publication-title: Nano Lett. – volume: 3 start-page: 732 year: 2012 publication-title: Nat. Commun. – volume: 25 start-page: 1693 year: 2013 publication-title: Adv. Mater. – volume: 50 start-page: 5641 year: 2015 publication-title: J. Mater. Sci. – volume: 9 start-page: 56 year: 2010 publication-title: Cerebellum – volume: 35 start-page: 306 year: 2010 publication-title: MRS Bull. – volume: 33 start-page: 349 year: 2010 publication-title: Annu. Rev. Neurosci. – ident: e_1_2_6_17_1 doi: 10.1038/ncomms4158 – ident: e_1_2_6_50_1 doi: 10.1146/annurev.physiol.64.092501.114547 – ident: e_1_2_6_8_1 doi: 10.1002/adma.201203680 – ident: e_1_2_6_43_1 doi: 10.1039/C1JM14773K – ident: e_1_2_6_44_1 doi: 10.1016/j.carbon.2015.07.072 – ident: e_1_2_6_40_1 doi: 10.1039/C4NR05471G – ident: e_1_2_6_47_1 doi: 10.1063/1.3457785 – ident: e_1_2_6_11_1 doi: 10.1039/c2ra22507g – ident: e_1_2_6_15_1 doi: 10.1002/adma.201000282 – ident: e_1_2_6_55_1 doi: 10.1007/s12311-009-0140-6 – ident: e_1_2_6_41_1 doi: 10.1021/jp4055022 – ident: e_1_2_6_12_1 doi: 10.1063/1.4804983 – volume-title: Principles of Neural Science year: 1985 ident: e_1_2_6_53_1 – ident: e_1_2_6_1_1 doi: 10.1016/j.neucom.2010.03.021 – ident: e_1_2_6_22_1 doi: 10.1002/adma.200904054 – ident: e_1_2_6_45_1 doi: 10.1021/am502168x – ident: e_1_2_6_33_1 doi: 10.1063/1.1854721 – ident: e_1_2_6_51_1 doi: 10.1038/nrn2558 – ident: e_1_2_6_42_1 doi: 10.1039/C6NR00015K – ident: e_1_2_6_34_1 doi: 10.1063/1.1564291 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201504958 – ident: e_1_2_6_30_1 doi: 10.1557/mrs2010.553 – ident: e_1_2_6_54_1 doi: 10.1109/TED.2011.2147791 – ident: e_1_2_6_19_1 doi: 10.1021/acsami.5b10195 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201203116 – ident: e_1_2_6_49_1 doi: 10.1016/j.neuron.2013.10.022 – ident: e_1_2_6_27_1 doi: 10.1021/acs.nanolett.5b04549 – ident: e_1_2_6_21_1 doi: 10.1002/adma.200900860 – ident: e_1_2_6_46_1 doi: 10.1002/adfm.200801633 – ident: e_1_2_6_18_1 doi: 10.1007/s10853-015-9121-y – ident: e_1_2_6_28_1 doi: 10.1126/science.1160309 – ident: e_1_2_6_25_1 doi: 10.1038/nnano.2010.232 – volume: 27 start-page: 1509 year: 2015 ident: e_1_2_6_26_1 publication-title: Prog. Chem. – ident: e_1_2_6_10_1 doi: 10.1038/ncomms1737 – ident: e_1_2_6_9_1 doi: 10.1021/nl904092h – ident: e_1_2_6_37_1 doi: 10.1002/smll.201203154 – ident: e_1_2_6_52_1 doi: 10.1146/annurev-neuro-060909-153204 – ident: e_1_2_6_6_1 doi: 10.1088/0957-4484/24/38/382001 – ident: e_1_2_6_29_1 doi: 10.1038/nmat2459 – ident: e_1_2_6_13_1 doi: 10.1038/srep01619 – ident: e_1_2_6_48_1 doi: 10.1016/j.neuron.2013.10.013 – ident: e_1_2_6_23_1 doi: 10.1002/adma.201202790 – ident: e_1_2_6_4_1 doi: 10.1016/S0166-2236(00)01835-X – ident: e_1_2_6_31_1 doi: 10.1126/science.1222453 – ident: e_1_2_6_20_1 doi: 10.1002/adma.201502719 – ident: e_1_2_6_35_1 doi: 10.1021/nl203701g – ident: e_1_2_6_14_1 doi: 10.1038/ncomms3676 – ident: e_1_2_6_36_1 doi: 10.1021/nl902522f – ident: e_1_2_6_39_1 doi: 10.1021/nl3038773 – ident: e_1_2_6_5_1 doi: 10.1038/nature03010 – ident: e_1_2_6_3_1 doi: 10.1109/JPROC.2011.2166369 – ident: e_1_2_6_38_1 doi: 10.1021/nl401934a – ident: e_1_2_6_24_1 doi: 10.1021/nl8038579 – ident: e_1_2_6_2_1 doi: 10.1063/1.3640806 – ident: e_1_2_6_7_1 doi: 10.1038/nn0604-567 |
| SSID | ssj0017734 |
| Score | 2.5829222 |
| Snippet | Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain‐inspired neuromorphic systems. At the... Hardware implementation of artificial synapse/neuron by electronic/ionic hybrid devices is of great interest for brain-inspired neuromorphic systems. At the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | np |
| SubjectTerms | Brain carbon nanotube thin‐film transistors Devices Electronic devices Electronics Filtering Filtration Materials science Neuromorphic computing neuromorphic systems printed electronics Semiconductor devices Spikes Synapses synaptic devices Thin film transistors Transistors Voltage |
| Title | Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604447 https://www.proquest.com/docview/1920432899 https://www.proquest.com/docview/1884134501 |
| Volume | 27 |
| WOSCitedRecordID | wos000394677300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BYYCBf0ShICMhMUVNHKdORqBEDFBViKJuURw7UqU2Qf1h5hF4Rp6Es5Om7YCQYIqsXBLrznf3OWd_Brhype0KOxDoSNyzGBWBFceebanUSVkqE-4Ynu7XR97p-P1-0F3axV_wQ1Q_3LRnmHitHTwWk-aCNDSWqd5J7rQ04xlfhw2Kg5fVYKP9HPYeq0oC50VlueXoNV5Of07caNPm6htWE9MCbS5jVpN0wt3_d3cPdkrASW6KEbIPayo7gO0lGsJD6HXHmjVCEsPUMcpR9YOEtJUJIuQW85wkeUbmUnfxWGAT43I-nQlF9NGfXx-f4WA4Iib1GeaRyRH0wvuXuwerPG7BSliLYahRXkpTtBvXxVJHe7ajqCclDZQjWSIwnyoZi5abMEXRmRPlpykiNuaJgCnfPYZalmfqBAhiOtfnHO2Nd6TyYxn4wsOpH155YNt1sOa6jpKSi1wfiTGMChZlGml1RZW66nBdyb8VLBw_SjbmpotKb5xEiGI18yBOLetwWd1GP9LFkThT-QxlfB_zOcNO1oEaQ_7ypeimHT5VrdO_PHQGW1SjBLMIvAG16XimzmEzeZ8OJuOLciR_A5TM8_U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdSDb3F11QiCp2Kbppv2qK5lxXURcWVvpWlSWFhb2Ydnf4K_0V_iJO1WPYggnkrItA0zmUcyky8AJ660XWEHAhWJexajIrDi2LMtlTopS2XCHYPT_djh3a7f7wd3ZTWhPgtT4ENUG25aM4y91gquN6TPPlFDY5nqo-ROU0Oe8XlYYDiXvBostO7DXqdKJXBepJabji7ycvoz5Eabnn3_wnfP9Blufg1ajdcJ1_5hvOuwWoac5LyYIxswp7JNWPkCRLgFvbuRxo2QxGB1POXI_EFCWsqYEXKBnk6SPCMzqst4JLCJljmfTIUi-vLP99e3cDB8Isb5GeyR8Tb0wquHy7ZVXrhgJazJ0NgoL6UpSo7rdKmjddtR1JOSBsqRLBHoUZWMRdNNmKKozony0xRjNuaJgCnf3YFalmdqFwhGda7POUoce6TyYxn4wsPFHz55YNt1sGbMjpISjVxfijGMChxlGml2RRW76nBa0T8XOBw_UjZmsotKfRxHGMdq7EFcXNbhuOpGTdLpkThT-RRpfB89OsNB1oEaSf7yp-i8Fd5Wrb2_vHQES-2H207Uue7e7MMy1TGDKQlvQG0ymqoDWExeJoPx6LCc1h87sPfl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED_xZ0LsYbANtI4CRpq0p4jEceLkEegiEKWq0Ir6FsWxLVVqk6p_9sxH4DPuk-zspCk8oEmIp8jKJbHu_Ls75-yfAX740vWFGwsEEg8cRkXsZFngOkp7mmmZc8_ydD90ea8XDYdxv15NaPbCVPwQzQ83gwzrrw3A1VTq8zVraCa12UruhYbyjG_CNgviELG53blPBt2mlMB5VVoOPbPIyxuumBtdev7yDS8j0zrdfJ602qiT7L1Df_fhU51ykotqjHyGDVV8gY_PiAi_wqA_M7wRkliujkmJyh_lpKOsGyGXGOkkKQuykrrKZgKb6JnLxVIoYg7__Pv4lIzGE2KDn-UemR_AIPn1--raqQ9ccHIWMnQ2KtBUo-W4KZd6BtueooGUNFaeZLnAiKpkJkI_Z4oinHMVaY05GwtEzFTkH8JWURbqGxDM6vyIc7Q43pEqymQciQAnf3jlseu2wFkpO81rNnJzKMY4rXiUaWrUlTbqasHPRn5a8XC8Ktle2S6t8ThPMY813IM4uWzBWXMbkWTKI1mhyiXKRBFGdIadbAG1lvzPl9KLTnLXtL6_5aFT2Ol3krR707s9gl1qUga7IrwNW4vZUh3Dh_zPYjSfndSj-h_RF_dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printed+Neuromorphic+Devices+Based+on+Printed+Carbon+Nanotube+Thin-Film+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Feng%2C+Ping&rft.au=Xu%2C+Weiwei&rft.au=Yang%2C+Yi&rft.au=Wan%2C+Xiang&rft.date=2017-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.201604447&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |