A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis

•A role for neuronal connexin 36 in the pathogenesis of ALS is proposed.•The mechanism relies on contribution of connexin 36 to ALS-related neuronal death.•A perspective for the use of connexin 36 blockade for ALS therapy is discussed. Neuronal gap junctional protein connexin 36 (Cx36) contributes t...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience letters Vol. 666; pp. 1 - 4
Main Authors: Belousov, Andrei B., Nishimune, Hiroshi, Denisova, Janna V., Fontes, Joseph D.
Format: Journal Article
Language:English
Published: Ireland Elsevier B.V 14.02.2018
Subjects:
ISSN:0304-3940, 1872-7972, 1872-7972
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A role for neuronal connexin 36 in the pathogenesis of ALS is proposed.•The mechanism relies on contribution of connexin 36 to ALS-related neuronal death.•A perspective for the use of connexin 36 blockade for ALS therapy is discussed. Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
AbstractList Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1 mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
•A role for neuronal connexin 36 in the pathogenesis of ALS is proposed.•The mechanism relies on contribution of connexin 36 to ALS-related neuronal death.•A perspective for the use of connexin 36 blockade for ALS therapy is discussed. Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
Author Nishimune, Hiroshi
Denisova, Janna V.
Belousov, Andrei B.
Fontes, Joseph D.
AuthorAffiliation 3 Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
2 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
AuthorAffiliation_xml – name: 3 Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
– name: 2 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
– name: 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
Author_xml – sequence: 1
  givenname: Andrei B.
  surname: Belousov
  fullname: Belousov, Andrei B.
  email: abelousov@kumc.edu
  organization: Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
– sequence: 2
  givenname: Hiroshi
  surname: Nishimune
  fullname: Nishimune, Hiroshi
  organization: Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
– sequence: 3
  givenname: Janna V.
  surname: Denisova
  fullname: Denisova, Janna V.
  organization: Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
– sequence: 4
  givenname: Joseph D.
  surname: Fontes
  fullname: Fontes, Joseph D.
  organization: Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29246791$$D View this record in MEDLINE/PubMed
BookMark eNqFUUFPHCEYJcamrrb_wDQce5kpMMwweGhijK0mJr3Uq4RhvnHZsDACa_Tfy2a3RntoOUAC773v8d4xOvTBA0KnlNSU0O7bqvawcZBrRqioKasJEwdoQXvBKiEFO0QL0hBeNZKTI3Sc0ooQ0tKWf0RHTDLeCUkX6O4czyGDz1Y7HIMDPIWIi3IMvtyY4D08WY-bDpc9LwHPOi_DPXhINuEwYb1-DjmGeWkNdjpDLLRkHMRQAJ_Qh0m7BJ_35wm6_XH5--Kquvn18_ri_KYyvGtyNUADkyCcSAHNqDn0pp-0ITD2tB0ZNEYbAawghkEU63Qgpht7aTrJh3YkzQn6vtOdN8MaRlM-VHyoOdq1js8qaKvev3i7VPfhUbU9aduOF4Gve4EYHjaQslrbZMA57SFskqJSlCW7lhbol7ezXof8CbUA-A5gSgYpwvQKoURtu1MrtetObbtTlKnSXaGd_UUzNutsw9axdf8j7wOAkvKjhaiSseANjDaCyWoM9t8CL6Y2umc
CitedBy_id crossref_primary_10_3390_ijms20235976
crossref_primary_10_1016_j_pbiomolbio_2025_03_001
crossref_primary_10_1038_s41467_023_37040_8
crossref_primary_10_1038_s41598_024_61508_2
crossref_primary_10_3389_fnins_2018_00894
crossref_primary_10_3389_fnins_2020_582934
crossref_primary_10_3389_fncel_2025_1640590
crossref_primary_10_3390_ijms232416046
crossref_primary_10_1155_2022_5339361
crossref_primary_10_1038_s41467_024_53587_6
crossref_primary_10_3389_fnmol_2018_00170
crossref_primary_10_1111_cen3_12577
Cites_doi 10.1016/j.expneurol.2011.06.003
10.1073/pnas.051634298
10.1016/j.nbd.2013.04.012
10.1038/362059a0
10.1523/JNEUROSCI.2137-08.2008
10.1016/j.nbd.2012.07.004
10.1073/pnas.97.13.7573
10.1016/j.neulet.2012.06.065
10.2307/3579763
10.1371/journal.pone.0021108
10.1523/JNEUROSCI.1119-12.2013
10.1152/jn.00362.2007
10.1152/jn.00656.2010
10.1371/journal.pone.0125395
10.1523/JNEUROSCI.3872-11.2012
10.1073/pnas.0402044101
10.1016/j.tins.2012.11.001
10.1523/JNEUROSCI.6787-10.2011
10.1038/nm1205
10.1038/cdd.2008.196
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.neulet.2017.12.027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-7972
EndPage 4
ExternalDocumentID PMC5805564
29246791
10_1016_j_neulet_2017_12_027
S0304394017310005
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD002528
– fundername: NINDS NIH HHS
  grantid: R01 NS078214
– fundername: NIA NIH HHS
  grantid: R01 AG051470
– fundername: NCATS NIH HHS
  grantid: UL1 TR000001
– fundername: NIA NIH HHS
  grantid: P30 AG035982
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
WH7
YCJ
~G-
.55
.GJ
29N
5VS
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
R2-
SEW
SNS
WUQ
X7M
ZGI
ZXP
ZY4
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c463t-be3ef704097e3da4e8c8fac0ed815d2e3cac7e2704bb72461b0c6d89c694b5d03
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426234700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3940
1872-7972
IngestDate Tue Sep 30 16:57:39 EDT 2025
Sat Sep 27 18:38:00 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
Sat Nov 29 07:21:40 EST 2025
Tue Nov 18 22:40:46 EST 2025
Fri Feb 23 02:31:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Amyotrophic lateral sclerosis
Spinal cord
Neurodegenerative diseases
Gap junctions
Connexin 36
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-be3ef704097e3da4e8c8fac0ed815d2e3cac7e2704bb72461b0c6d89c694b5d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0304394017310005?via%3Dihub
PMID 29246791
PQID 1977779651
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805564
proquest_miscellaneous_1977779651
pubmed_primary_29246791
crossref_primary_10_1016_j_neulet_2017_12_027
crossref_citationtrail_10_1016_j_neulet_2017_12_027
elsevier_sciencedirect_doi_10_1016_j_neulet_2017_12_027
PublicationCentury 2000
PublicationDate 2018-02-14
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-14
  day: 14
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Neuroscience letters
PublicationTitleAlternate Neurosci Lett
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jouroukhin, Ostritsky, Assaf, Pelled, Giladi, Gozes (bib0060) 2013; 56
Wang, Song, Denisova, Park, Fontes, Belousov (bib0015) 2012; 32
Brooks, Sanjak, Belden, Juhasz-Poscine, Waclawik (bib0030) 2000
Ralph, Radcliffe, Day, Carthy, Leroux, Lee, Wong, Bilsland, Greensmith, Kingsman, Mitrophanous, Mazarakis, Azzouz (bib0055) 2005; 11
Cruikshank, Hopperstad, Younger, Connors, Spray, Srinivas (bib0105) 2004; 101
Belousov, Fontes (bib0025) 2013; 36
de Rivero Vaccari, Corriveau, Belousov (bib0090) 2007; 98
Rosen, Siddique, Patterson, Figlewicz, Sapp, Hentati, Donaldson, Goto, O'Regan, Deng (bib0035) 1993; 362
Yoo, Ko (bib0050) 2011; 231
Li, Kamasawa, Ciolofan, Olson, Lu, Davidson, Yasumura, Shigemoto, Rash, Nagy (bib0085) 2008; 28
Wang, Denisova, Kang, Fontes, Zhu, Belousov (bib0005) 2010; 104
Song, Song, Kincaid, Bossy, Bossy-Wetzel (bib0045) 2013; 51
Rash, Staines, Yasumura, Patel, Furman, Stelmack, Nagy (bib0075) 2000; 97
Fontes, Ramsey, Polk, Koop, Denisova, Belousov (bib0020) 2015; 10
Belousov, Wang, Song, Denisova, Berman, Fontes (bib0010) 2012; 524
Parone, Da Cruz, Han, McAlonis-Downes, Vetto, Lee, Tseng, Cleveland (bib0065) 2013; 33
Park, Wang, Park, Denisova, Fontes, Belousov (bib0070) 2011; 31
Takeuchi, Mizoguchi, Doi, Jin, Noda, Liang, Li, Zhou, Mori, Yasuoka, Li, Parajuli, Kawanokuchi, Sonobe, Sato, Yamanaka, Sobue, Mizuno, Suzumura (bib0095) 2011; 6
Liu, Narla, Kurinov, Li, Uckun (bib0040) 1999; 151
Eugenin, Eckardt, Theis, Willecke, Bennett, Saez (bib0080) 2001; 98
Decrock, Vinken, De Vuyst, Krysko, D'Herde, Vanhaecke, Vandenabeele, Rogiers, Leybaert (bib0100) 2009; 16
Belousov (10.1016/j.neulet.2017.12.027_bib0010) 2012; 524
Parone (10.1016/j.neulet.2017.12.027_bib0065) 2013; 33
Decrock (10.1016/j.neulet.2017.12.027_bib0100) 2009; 16
Takeuchi (10.1016/j.neulet.2017.12.027_bib0095) 2011; 6
de Rivero Vaccari (10.1016/j.neulet.2017.12.027_bib0090) 2007; 98
Wang (10.1016/j.neulet.2017.12.027_bib0005) 2010; 104
Yoo (10.1016/j.neulet.2017.12.027_bib0050) 2011; 231
Eugenin (10.1016/j.neulet.2017.12.027_bib0080) 2001; 98
Wang (10.1016/j.neulet.2017.12.027_bib0015) 2012; 32
Park (10.1016/j.neulet.2017.12.027_bib0070) 2011; 31
Belousov (10.1016/j.neulet.2017.12.027_bib0025) 2013; 36
Song (10.1016/j.neulet.2017.12.027_bib0045) 2013; 51
Fontes (10.1016/j.neulet.2017.12.027_bib0020) 2015; 10
Liu (10.1016/j.neulet.2017.12.027_bib0040) 1999; 151
Ralph (10.1016/j.neulet.2017.12.027_bib0055) 2005; 11
Jouroukhin (10.1016/j.neulet.2017.12.027_bib0060) 2013; 56
Rosen (10.1016/j.neulet.2017.12.027_bib0035) 1993; 362
Li (10.1016/j.neulet.2017.12.027_bib0085) 2008; 28
Cruikshank (10.1016/j.neulet.2017.12.027_bib0105) 2004; 101
Brooks (10.1016/j.neulet.2017.12.027_bib0030) 2000
Rash (10.1016/j.neulet.2017.12.027_bib0075) 2000; 97
References_xml – volume: 33
  start-page: 4657
  year: 2013
  end-page: 4671
  ident: bib0065
  article-title: Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis
  publication-title: J. Neurosci.
– volume: 31
  start-page: 5909
  year: 2011
  end-page: 5920
  ident: bib0070
  article-title: Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses
  publication-title: J. Neurosci.
– volume: 231
  start-page: 147
  year: 2011
  end-page: 159
  ident: bib0050
  article-title: Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis
  publication-title: Exp. Neurol.
– volume: 11
  start-page: 429
  year: 2005
  end-page: 433
  ident: bib0055
  article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model
  publication-title: Nat. Med.
– volume: 101
  start-page: 12364
  year: 2004
  end-page: 12369
  ident: bib0105
  article-title: Potent block of Cx36 and Cx50 gap junction channels by mefloquine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 98
  start-page: 4190
  year: 2001
  end-page: 4195
  ident: bib0080
  article-title: Microglia at brain stab wounds express connexin 43 and
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 32
  start-page: 713
  year: 2012
  end-page: 725
  ident: bib0015
  article-title: Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury
  publication-title: J. Neurosci.
– volume: 36
  start-page: 227
  year: 2013
  end-page: 236
  ident: bib0025
  article-title: Neuronal gap junctions: making and breaking connections during development and injury
  publication-title: Trends Neurosci.
– volume: 98
  start-page: 2878
  year: 2007
  end-page: 2886
  ident: bib0090
  article-title: Gap junctions are required for NMDA receptor-dependent cell death in developing neurons
  publication-title: J. Neurophysiol.
– volume: 51
  start-page: 72
  year: 2013
  end-page: 81
  ident: bib0045
  article-title: Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α
  publication-title: Neurobiol. Dis.
– volume: 10
  start-page: e0125395
  year: 2015
  ident: bib0020
  article-title: Death of neurons following injury requires conductive neuronal gap junction channels but not a specific connexin
  publication-title: PLoS One
– volume: 362
  start-page: 59
  year: 1993
  end-page: 62
  ident: bib0035
  article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 56
  start-page: 79
  year: 2013
  end-page: 94
  ident: bib0060
  article-title: NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport
  publication-title: Neurobiol. Dis.
– volume: 16
  start-page: 524
  year: 2009
  end-page: 536
  ident: bib0100
  article-title: Connexin-related signaling in cell death: to live or let die?
  publication-title: Cell Death Differ.
– start-page: 31
  year: 2000
  end-page: 58
  ident: bib0030
  article-title: Natural history of amyotrophic lateral sclerosis – impairment, disability, handicap
  publication-title: Amyotrophic Lateral Sclerosis
– volume: 524
  start-page: 16
  year: 2012
  end-page: 19
  ident: bib0010
  article-title: Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact
  publication-title: Neurosci. Lett.
– volume: 6
  start-page: e21108
  year: 2011
  ident: bib0095
  article-title: Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease
  publication-title: PLoS One
– volume: 151
  start-page: 133
  year: 1999
  end-page: 141
  ident: bib0040
  article-title: Increased hydroxyl radical production and apoptosis in PC12 neuron cells expressing the gain-of-function mutant G93A SOD1 gene
  publication-title: Radiat. Res.
– volume: 97
  start-page: 7573
  year: 2000
  end-page: 7578
  ident: bib0075
  article-title: Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 9769
  year: 2008
  end-page: 9789
  ident: bib0085
  article-title: Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1
  publication-title: J. Neurosci.
– volume: 104
  start-page: 3551
  year: 2010
  end-page: 3556
  ident: bib0005
  article-title: Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke
  publication-title: J. Neurophysiol.
– volume: 231
  start-page: 147
  year: 2011
  ident: 10.1016/j.neulet.2017.12.027_bib0050
  article-title: Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2011.06.003
– volume: 98
  start-page: 4190
  year: 2001
  ident: 10.1016/j.neulet.2017.12.027_bib0080
  article-title: Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-γ and tumor necrosis factor-α
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.051634298
– volume: 56
  start-page: 79
  year: 2013
  ident: 10.1016/j.neulet.2017.12.027_bib0060
  article-title: NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.04.012
– start-page: 31
  year: 2000
  ident: 10.1016/j.neulet.2017.12.027_bib0030
  article-title: Natural history of amyotrophic lateral sclerosis – impairment, disability, handicap
– volume: 362
  start-page: 59
  year: 1993
  ident: 10.1016/j.neulet.2017.12.027_bib0035
  article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis
  publication-title: Nature
  doi: 10.1038/362059a0
– volume: 28
  start-page: 9769
  year: 2008
  ident: 10.1016/j.neulet.2017.12.027_bib0085
  article-title: Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2137-08.2008
– volume: 51
  start-page: 72
  year: 2013
  ident: 10.1016/j.neulet.2017.12.027_bib0045
  article-title: Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2012.07.004
– volume: 97
  start-page: 7573
  year: 2000
  ident: 10.1016/j.neulet.2017.12.027_bib0075
  article-title: Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.13.7573
– volume: 524
  start-page: 16
  year: 2012
  ident: 10.1016/j.neulet.2017.12.027_bib0010
  article-title: Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.06.065
– volume: 151
  start-page: 133
  year: 1999
  ident: 10.1016/j.neulet.2017.12.027_bib0040
  article-title: Increased hydroxyl radical production and apoptosis in PC12 neuron cells expressing the gain-of-function mutant G93A SOD1 gene
  publication-title: Radiat. Res.
  doi: 10.2307/3579763
– volume: 6
  start-page: e21108
  year: 2011
  ident: 10.1016/j.neulet.2017.12.027_bib0095
  article-title: Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021108
– volume: 33
  start-page: 4657
  year: 2013
  ident: 10.1016/j.neulet.2017.12.027_bib0065
  article-title: Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1119-12.2013
– volume: 98
  start-page: 2878
  year: 2007
  ident: 10.1016/j.neulet.2017.12.027_bib0090
  article-title: Gap junctions are required for NMDA receptor-dependent cell death in developing neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00362.2007
– volume: 104
  start-page: 3551
  year: 2010
  ident: 10.1016/j.neulet.2017.12.027_bib0005
  article-title: Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00656.2010
– volume: 10
  start-page: e0125395
  year: 2015
  ident: 10.1016/j.neulet.2017.12.027_bib0020
  article-title: Death of neurons following injury requires conductive neuronal gap junction channels but not a specific connexin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125395
– volume: 32
  start-page: 713
  year: 2012
  ident: 10.1016/j.neulet.2017.12.027_bib0015
  article-title: Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3872-11.2012
– volume: 101
  start-page: 12364
  year: 2004
  ident: 10.1016/j.neulet.2017.12.027_bib0105
  article-title: Potent block of Cx36 and Cx50 gap junction channels by mefloquine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0402044101
– volume: 36
  start-page: 227
  year: 2013
  ident: 10.1016/j.neulet.2017.12.027_bib0025
  article-title: Neuronal gap junctions: making and breaking connections during development and injury
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2012.11.001
– volume: 31
  start-page: 5909
  year: 2011
  ident: 10.1016/j.neulet.2017.12.027_bib0070
  article-title: Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6787-10.2011
– volume: 11
  start-page: 429
  year: 2005
  ident: 10.1016/j.neulet.2017.12.027_bib0055
  article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model
  publication-title: Nat. Med.
  doi: 10.1038/nm1205
– volume: 16
  start-page: 524
  year: 2009
  ident: 10.1016/j.neulet.2017.12.027_bib0100
  article-title: Connexin-related signaling in cell death: to live or let die?
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.196
SSID ssj0005154
Score 2.3121455
Snippet •A role for neuronal connexin 36 in the pathogenesis of ALS is proposed.•The mechanism relies on contribution of connexin 36 to ALS-related neuronal death.•A...
Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Animals
Connexin 36
Connexins - metabolism
Disease Models, Animal
Gap Junction delta-2 Protein
Gap junctions
Gap Junctions - metabolism
Humans
Mice
Motor Neurons - metabolism
Neurodegenerative diseases
Spinal cord
Spinal Cord - metabolism
Superoxide Dismutase-1 - metabolism
Title A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis
URI https://dx.doi.org/10.1016/j.neulet.2017.12.027
https://www.ncbi.nlm.nih.gov/pubmed/29246791
https://www.proquest.com/docview/1977779651
https://pubmed.ncbi.nlm.nih.gov/PMC5805564
Volume 666
WOSCitedRecordID wos000426234700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7972
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005154
  issn: 0304-3940
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEGxcymUyEuIlSlXnZuexwKaBoEJiTH0iysVZM6VO1abV9l_4sZwTJ2m2ggZIvFhVGieOz-fj23c-E_KaiZgLn8WmnSa26aTcN6NUoGwl56EUrsOqk-fOPvHxWEwm_pde70cTC7POuVLi8tKf_1dTwzUwNobO_oW524fCBfgNRocUzA7pHxl-ZMyLEjlAKNmP3EEkElaylarSAlGofqkM22sojngocXGOPk9rk4Szq6JcFPNpFht5iBHKGDeZS-hPs2V3MDveaGFKI6_igjaL7jIvVsti3ZImM-PtoLMJMs1mK72YepLBQ6ZZO6KWKoN8NYVXqdA4a_Mdo5RWZ-PCeD_orlowgURntlm13A6n0SFcuE3ja_2mgdQeWXCYAvj8msv2vK7TZZ3e2_llt6BXKC4GUNlQG0jo49UisJYluCG4_RWLgaVgvNr9cHfInsVdH3zm3ujD0eTjhkLEXC1PVhe7Cc2s-IPb7_rd0Gd7anOTodsZ8pw-IPfruQodaYw9JD2p9snBSIVlMbuib2jFHq62ZfbJ3c81SeOAfB_RFoEUEUgBgbRBIG0QSG2PQgoIpF0E0iKlHQTSGoG0ReAj8u346PTdiVkf42HGjmeXZiRtmfIhCqtJOwkdKWKRhvFQJoK5iSXtOIy5tOCOKOIobxgNYy8Rfuz5TuQmQ_sx2VWFkk8JZa6wE4slIfgURzIvCiNHRjCKZkmEQox9Yjc1HMS1xj0etZIHDZnxItB2CdAuAbMCsEufmG2uudZ4ueV-3hgvqBuZHn8GgLdbcr5qbB2AG8e9uVBJaI4Bg3kY5z58SZ880bZvy2L5UCscv45fQ0V7A0rEX_9HZdNKKt4VKJblPPvnEj8n9zbN9wXZLRcr-ZLciddltlwckh0-EYd1s_gJ2UDmng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+potential+role+for+neuronal+connexin+36+in+the+pathogenesis+of+amyotrophic+lateral+sclerosis&rft.jtitle=Neuroscience+letters&rft.au=Belousov%2C+Andrei+B.&rft.au=Nishimune%2C+Hiroshi&rft.au=Denisova%2C+Janna+V.&rft.au=Fontes%2C+Joseph+D.&rft.date=2018-02-14&rft.pub=Elsevier+B.V&rft.issn=0304-3940&rft.eissn=1872-7972&rft.volume=666&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1016%2Fj.neulet.2017.12.027&rft.externalDocID=S0304394017310005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3940&client=summon