Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses

In this paper, we present an alternative approach to neuromorphic systems based on multilevel resistive memory synapses and deterministic learning rules. We demonstrate an original methodology to use conductive-bridge RAM (CBRAM) devices as, easy to program and low-power, binary synapses with stocha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on electron devices Ročník 60; číslo 7; s. 2402 - 2409
Hlavní autori: Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9383, 1557-9646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present an alternative approach to neuromorphic systems based on multilevel resistive memory synapses and deterministic learning rules. We demonstrate an original methodology to use conductive-bridge RAM (CBRAM) devices as, easy to program and low-power, binary synapses with stochastic learning rules. New circuit architecture, programming strategy, and probabilistic spike-timing dependent plasticity (STDP) learning rule for two different CBRAM configurations with-selector (1T-1R) and without-selector (1R) are proposed. We show two methods (intrinsic and extrinsic) for implementing probabilistic STDP rules. Fully unsupervised learning with binary synapses is illustrated through two example applications: 1) real-time auditory pattern extraction (inspired from a 64-channel silicon cochlea emulator); and 2) visual pattern extraction (inspired from the processing inside visual cortex). High accuracy (audio pattern sensitivity > 2, video detection rate > 95%) and low synaptic-power dissipation (audio 0.55 μW, video 74.2 μW) are shown. The robustness and impact of synaptic parameter variability on system performance are also analyzed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2013.2263000