Inverse Compositional Estimation of 3D Pose And Lighting in Dynamic Scenes
In this paper, we show how we can estimate, accurately and efficiently, the 3D motion of a rigid object and time-varying lighting in a dynamic scene. This is achieved in an inverse compositional tracking framework with a novel warping function that involves a 2D rarr 3D rarr 2D transformation. This...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 30; číslo 7; s. 1300 - 1307 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Los Alamitos, CA
IEEE
01.07.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we show how we can estimate, accurately and efficiently, the 3D motion of a rigid object and time-varying lighting in a dynamic scene. This is achieved in an inverse compositional tracking framework with a novel warping function that involves a 2D rarr 3D rarr 2D transformation. This also allows us to extend traditional two-frame inverse compositional tracking to a sequence of frames, leading to even higher computational savings. We prove the theoretical convergence of this method and show that it leads to significant reduction in computational burden. Experimental analysis on multiple video sequences shows impressive speedup over existing methods while retaining a high level of accuracy. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0162-8828 1939-3539 |
| DOI: | 10.1109/TPAMI.2008.81 |