Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets

We revisit the well‐known but often misunderstood issue of (non)collapsibility of effect measures in regression models for binary and time‐to‐event outcomes. We describe an existing simple but largely ignored procedure for marginalizing estimates of conditional odds ratios and propose a similar proc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrical journal Ročník 63; číslo 3; s. 528 - 557
Hlavní autoři: Daniel, Rhian, Zhang, Jingjing, Farewell, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.03.2021
John Wiley and Sons Inc
Témata:
ISSN:0323-3847, 1521-4036, 1521-4036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We revisit the well‐known but often misunderstood issue of (non)collapsibility of effect measures in regression models for binary and time‐to‐event outcomes. We describe an existing simple but largely ignored procedure for marginalizing estimates of conditional odds ratios and propose a similar procedure for marginalizing estimates of conditional hazard ratios (allowing for right censoring), demonstrating its performance in simulation studies and in a reanalysis of data from a small randomized trial in primary biliary cirrhosis patients. In addition, we aim to provide an educational summary of issues surrounding (non)collapsibility from a causal inference perspective and to promote the idea that the words conditional and adjusted (likewise marginal and unadjusted) should not be used interchangeably.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0323-3847
1521-4036
1521-4036
DOI:10.1002/bimj.201900297