Refining an algorithm-powered just-in-time adaptive weight control intervention: A randomized controlled trial evaluating model performance and behavioral outcomes

Suboptimal weight losses are partially attributable to lapses from a prescribed diet. We developed an app (OnTrack) that uses ecological momentary assessment to measure dietary lapses and relevant lapse triggers and provides personalized intervention using machine learning. Initially, tension betwee...

Full description

Saved in:
Bibliographic Details
Published in:Health informatics journal Vol. 26; no. 4; pp. 2315 - 2331
Main Authors: Goldstein, Stephanie P, Thomas, J Graham, Foster, Gary D, Turner-McGrievy, Gabrielle, Butryn, Meghan L, Herbert, James D, Martin, Gerald J, Forman, Evan M
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01.12.2020
SAGE PUBLICATIONS, INC
Subjects:
ISSN:1460-4582, 1741-2811, 1741-2811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Suboptimal weight losses are partially attributable to lapses from a prescribed diet. We developed an app (OnTrack) that uses ecological momentary assessment to measure dietary lapses and relevant lapse triggers and provides personalized intervention using machine learning. Initially, tension between user burden and complete data was resolved by presenting a subset of lapse trigger questions per ecological momentary assessment survey. However, this produced substantial missing data, which could reduce algorithm performance. We examined the effect of more questions per ecological momentary assessment survey on algorithm performance, app utilization, and behavioral outcomes. Participants with overweight/obesity (n = 121) used a 10-week mobile weight loss program and were randomized to OnTrack-short (i.e. 8 questions/survey) or OnTrack-long (i.e. 17 questions/survey). Additional questions reduced ecological momentary assessment adherence; however, increased data completeness improved algorithm performance. There were no differences in perceived effectiveness, app utilization, or behavioral outcomes. Minimal differences in utilization and perceived effectiveness likely contributed to similar behavioral outcomes across various conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:1460-4582
1741-2811
1741-2811
DOI:10.1177/1460458220902330